Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • BUILDING MATERIALS AND PRODUCTS
  • Mechanoactivation Of Rice Husk Ash In Laboratory Conditions
  • UDC 666.97.963.4 DOI: 10.33622/0869-7019.2019.11.20-26
    Tang Van LAM, e-mail: lamvantang@gmail.com
    Ngo Xuan HUNG, e-mail: xuanhung1610@gmail.com
    Vu Kim DIEN, e-mail: kimdienxdtb@gmail.com
    Boris I. BULGAKOV, e-mail: BulgakovBI@mgsu.ru
    Olga V. ALEKSANDROVA, e-mail: AleksandrovaOV@mgsu.ru
    Oksana A. LARSEN, e-mail: LarsenOA@mgsu.ru
    Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, 129337 Moscow, Russian Federation
    Abstract. In many rice producing countries of the world, including in Vietnam, various research aimed at using rice husk ash (RHA) as a finely dispersed active mineral additive in cements, concrete and mortars are being conducted. The effect of the duration of the mechanoactivation of the RHA, produced under laboratory conditions in Vietnam, on its pozzolanic activity were investigated in this study. The composition of ash was investigated by laser granulometry and the values of indicators characterizing the dispersion of its particles before and after mechanical activation were established. The content of soluble amorphous silicon oxide in rice husk ash samples was determined by photocolorimetric analysis. The pizzolanic activity of the RHA, fly ash and the silica fume was also compared according to the method of absorption of the solution of the active mineral additive. It is established that the duration of the mechanical activation of rice husk ash by grinding in a vibratory mill is optimal for increasing its pozzolanic activity, since it simultaneously results in the production of the most dispersed ash particles with the highest specific surface area and maximum solubility of the amorphous silica contained in it. Longer grinding does not lead to further reduction in the size of ash particles, which can be explained by their aggregation, and also reduces the solubility of amorphous silica in an aqueous alkaline medium.
    Key words: rice husk ash, mechanoactivation, amorphous silica oxide, active mineral additive, pozzolanic activity.
  • REFERENCES
    1. Nguyen Trong Chuc, Tang Van Lam, Bulgakov B. Designing the composition of concrete with mineral additives and assessment of the possibility of cracking in cement-concrete pavement [Проектирование состава бетона с минеральными добавками и оценка возможности растрескивания в цементобетонном покрытии]. Materials Science Forum, 2018, vol. 931, pp. 667-673. Available at: https://doi.org/10.4028/www.scientific.net/MSF.931.667 (accessed 3.07.2019).
    2. Tang Van Lam, Nguyen Trong Chuc, Ngo Xuan Hung, Dang Van Phi, Bulgakov B. I., Bazhenova S. I. Effect of natural pozzolan on strength and temperature distribution of heavyweight concrete at early ages [Влияние природного пуццолана на прочность и распределение температуры в тяжелом бетоне в раннем возрасте твердения]. MATEC Web of Conferences, 193, 03024, 2018, 8 p. Available at: https://doi.org/10.1051/matecconf/201819303024 (accessed 11.07.2019).
    3. Sivkov S. P., Potapova Ye. N., Nazarov D. V., Zakharov S. A. Hydration and hardening of cement in the presence of metakaolin. Mezhdunarodnoye analiticheskoye obozreniye "Alitinform". Tsement. Beton. Sukhiye smesi. 2015, no. 1, pp. 80-89. (In Russian).
    4. Bui D. D., Hu J., Stroeven P. Particle size effect on the strength of rice husk ash blended gap-graded Portland cement concrete [Влияние размера частиц золы рисовой шелухи на прочность бетона на портландцементе с добавками]. Cement and Concrete Composites, 2005, vol. 27, iss. 3, pp. 357-366.
    5. Ngo Xuan Hung, Tang Van Lam, Bulgakov B. I., Aleksandrova O. V., Larsen O. A. et al. The effect of rice husk ash on the properties of hydraulic concretes. Vestnik MGSU, 2018, vol. 13, iss. 6(117), pp. 768-777. Available at: https://doi.org/10.22227/1997-0935.2018.6.768-777 (accessed 3.07.2019). (In Russian).
    6. Zyryanov M. S., Akhmetzhanov A. M., Manushina A. S., Potapova Ye. N. Determination of the puzzolanic activity of metakaolin. Uspekhi v khimii i khimicheskoy tekhnologii, 2016, vol. XXX, no. 7, pp. 44-46. (In Russian).
    7. Pontes J., Santos Silva A, Faria P. Evaluation of pozzolanic reactivity of artificial pozzolans [Оценка пуццолановой реакционной способности искусственных пуццоланов]. Materials Science Forum, 2013, vol. 730-732, рp. 433-438.
    8. Tang Van Lam, Ngo Xuan Hung, Bulgakov B. I., Aleksandrova O. V., Larsen O. A. et al. The use of ash and slag waste as an additional cementing material. Vestnik BGTU im. V. G. Shukhova. 2018, no. 8, pp. 10-18. Available at: https://doi.org/10.12737/article_5b6d58455b5832.12667511 (accessed 11.07.2019). (In Russian).
    9. Bazhenov Yu. M., Pham Toan Duc. Improving the water resistance of concrete in humid hot climates. Stroitel'nyye materialy, 2007, no. 7, pp. 21. (In Russian).
    10. Vurasko A. V., Minakova A. R., Gulemina N. N., Driker B. N. Physico-chemical properties of cellulose obtained by the oxidative-organosolvent method from vegetable raw materials. Lesa Rossii v XXI veke: mat. pervoy Mezhdunar. nauch.-prakt. internet-konf. [Forests of Russia in the XXI century: mat. First Int. scientific-practical internet conf., June 2009]. St. Petersburg, 2009, pp. 127-131. (In Russian)
    11. Bui Danh Dai. Influence of rice husk ash on the properties of mortar and concrete [Влияние золы рисовой шелухи на свойства раствора и бетона]. Joint international scientific symposium "Scientific Achievements in Research on New Modern Building Materials". Hanoi, 2006, pp. 32-38.
    12. Monsef Shokri R., Khripunov A. K., Baklagina Yu. G., Gofman I. V. et al. The study of the composition of the Iranian rice straw and the properties of cellulose obtained from it. Novyye dostizheniya v khimii i khimicheskoy tekhnologii rastitel'nogo syr'ya: mat. III Vseros. konf. [New advances in chemistry and chemical technology of plant materials: proc. III Vseros. conf. April 23-27, 2007]. Barnaul, AltGU Publ., 2007. Vol. 1, pp. 53-55. (In Russian)
    13. Vurasko A. V., Driker B. N., Mozyreva Ye. A., Zemnukhova L. A. et al. Resource-saving technology for the production of cellulosic materials in the processing of agricultural waste. Khimiya rastitel'nogo syr'ya, 2006, no. 4, pp. 5-10. (In Russian).
    14. Zemnukhova L. A., Fedorishcheva G. A., Yegorov A. G., Sergiyenko V. I. The study of the conditions of production, the composition of impurities and the properties of amorphous silicon dioxide from rice production wastes. Zhurnal prikladnoy khimii, 2005, vol. 78, iss. 2, pp. 324-328. (In Russian).
    15. Mehta P. K., Malhotra V. M. Rice husk ash - unique supplementary cementing material [Зола рисовой шелухи - уникальный дополнительный материал для цементирования]. Advances in Concrete Technology. Canada Centre for Mineral and Energy Technology, Ottawa, 1994, pp. 419-444.
    16. Tang Van Lam, Bulgakov B., Aleksandrova O., Larsen O. et al. Effect of rice husk ash and fly ash on the compressive strength of high performance concrete [Влияние золы рисовой шелухи и золы-уноса на прочность при сжатии высокопрочного бетона]. E3S Web of Conferences, 33, 02030, 2018, 10 p. Available at: https://doi.org/10.1051/e3sconf/20183302030 (accessed 11.07.2019).
    17. Nguyen Dinh Trinh, Nguyen The Vinh, Bazhenov Yu. M. High-strength concretes with integrated use of rice husk ash, fly ash and superplasticizers. Vestnik MGSU, 2012, no. 1, pp. 77-82. (In Russian).
    18. Tang Van Lam, Bulgakov B., Aleksandrova O. et al. Effect of rice husk ash on hydrotechnical concrete behavior [Влияние золы рисовой шелухи на свойств гидротехнических бетонов]. IOP Conf. Series: Materials of Science and Engineering, 365, 2018, 032007, 10 p. Available at: https://doi:10.1088/1757-899X/365/3/032007 (accessed 3.07.2019).
    19. Van V. T. A., RцЯler C., Bui D. D., Ludwig H. M. Rice husk ash as both pozzolanic admixture and internal curing agent in ultra-high performance concrete [Зола рисовой шелухи в качестве пуццолановой добавки и внутреннего цементирующего агента для высококачественного бетона]. Cement and Concrete Composites, 2014, vol. 53, pp. 270-278.
    20. Satish H. Sathawane, Vikrant S. Vairagade, Kavita S Kene. Combine effect of rice husk ash and fly ash on concrete by 30 % cement replacement [Сочетание эффекта золы рисовой шелухи и золы-уноса в бетоне за счет замены цемента на 30 %]. Procedia Engineering, 2013, vol. 51, pp. 35-44.
    21. Ngo Van Toan. Research on effect of rice husk ash and superplasticizer on the properties of mortar and concrete [Исследование влияния золы рисовой шелухи и суперпластификатора на свойства строительного раствора и бетона]. Journal of Construction Science and Technology, 2013, no. 3+4, pp. 41-51.
    22. TCVN 141:2008. Portland cement - methods of chemical analysis [Портландцемент. Методы химического анализа].
    23. TCVN 3735:1982. Pozzolanic materials [Пуццолановые материалы].
    24. Zyryanov M. S., Akhmetzhanov A. M., Manushina A. S., Potapova Ye. N. Determination of puzzolanic activity of metakaolins. Uspekhi v khimii i khimicheskoy tekhnologii, 2016, vol. 30, iss. 7, pp. 44-46. (In Russian).
  • For citation: Tang Van Lam, Ngo Xuan Hung, Vu Kim Dien, Bulgakov B. I., Aleksandrova O. V., Larsen O. A. Mechanoactivation of Rice Husk Ash in Laboratory Conditions. Promyshlennoye i grazhdanskoye stroitel'stvo, 2019, no. 11, pp. 20-26. (In Russian). DOI: 10.33622/0869-7019.2019.11.20-26.


BACK