Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science


  • BUILDING MATERIALS AND PRODUCTS
  • Effect of Water-Binder Ratio and Complex Organic-Mineral Additive on Properties of Concrete for Marine Hydrotechnical Constructions
  • UDC 666.97 DOI: 10.33622/0869-7019.2019.03.11-21
    Tang Van LAM (Vietnam), e-mail: lamvantang@gmail.com
    Ngo Xuan HUNG (Vietnam), e-mail: xuanhung1610@gmail.com
    Vu Kim DIEN (Vietnam), e-mail: kimdienxdtb@gmail.com
    Nguyen Trong CHUC (Vietnam), e-mail: ntchuc.mta198@gmail.com
    Boris I. BULGAKOV, e-mail: BulgakovBI@mgsu.ru
    Olga Yu. BAZHENOVA, e-mail: BazhenovaOY@mgsu.ru
    Nadezhda A. GALTSEVA, e-mail: GalsevaNA@mgsu.ru
    Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    Abstract. Large-scale construction of marine structures in the coastal and offshore areas of Vietnam requires the development of new compositions of hydrotechnical concrete and innovative technologies for the preparation of concrete mixes, as well as their transportation to the place of placement. A preliminary composition of heavy concrete was determined and its properties were studied. The effect of the water-binder ratio (W/B) and the effect of using the developed complex organo-mineral modifying additive consisting of fly ash (FA) of Vung Ang TPP, microsilica SF-90 (SF90) and polycarboxylate superplasticizer SR 5000F (SP) on the concrete properties. To process the obtained results, the method of mathematical planning of the experiment with the construction of a four-factor plan was used. As a result of the studies conducted, first-order regression equations were obtained depending on the objective functions - the mobility of the concrete mixture on the cone sediment, the compressive strength of concrete and the deformations of concrete on input factors - x1 (W/B), x2 (amount of SP), x3 (amount of FA) and x4 (amount of SF90). From the obtained regression equations, it follows that the water-binder ratio, as well as the content of superplasticizer, fly ash and microsilica in the composition of the additive have a significant impact on the mobility of concrete mixtures. When reducing W/B and the amount of FA, as well as the increase in the amount of SF90 (x4) concrete compressive strength in 28 days also increases. The result of this study showed the relative deformation of concrete also increases with an increase in the content of FA and reducing W/B and the amount of SF90. At the same time, the effect of the water-binder relationship is most pronounced. It can be assumed that, in the composition of the developed modifying additive, the particles FA and SF90 played the role of a kind of "sliding bearings" between the grains of cement, with which you can control the dispersion of cement and finely dispersed mineral grains in the concrete mixture, and hence its mobility and persistence construction sites in the coastal areas of Vietnam. In addition, SF90, containing 91.65% of amorphous silica, binds free calcium hydroxide to less soluble low-basic calcium silicate silicates, compresses the structure of concrete and increases its compressive strength.
    Key words: marine hydraulic structures, sulfate-resistant Portland cement, fly ash, microsilica, workability of concrete mixture, compressive strength, deformation, complex organo-mineral additive. structure of concrete and increases its compressive strength.
  • REFERENCES
    1. Anufriyeva Ye. V. Corrosion-resistant concrete for hydraulic engineering construction. Gradostroitel'nyye aspekty ustoychivogo razvitiya krupnykh gorodov [Urban planning aspects of sustainable development of large cities]. Kharkiv, KNUGH named after A. N. Beketova, 2009, no. 93, pp. 537-541. (In Russian).
    2. Lesovik V. S., Fedyuk R. S. Povysheniye nepronitsayemosti fibrobetonov na kompozitsionnom vyazhushchem: monografiya [Increasing the impermeability of fiber-reinforced concrete on a composite binder]. Belgorod, BGTU named after V. G. Shuhov Publ., 2016. 165 p. (In Russian).
    3. Fedyuk R. S. Designing cement composites with increased impermeability. Vestnik MGSU, 2016, no. 5, pp. 72-81. (In Russian).
    4. Tang Van Lam, Nguyen Doan Tung Lam, Bulgakov B. I. Increasing the resistance of concrete to corrosion in the marine environment. Sbornik materialov XX Mezhdunarodnoy mezhvuzovskoy nauchno-prakticheskoy konferentsii studentov, magistrantov, aspirantov i molodykh uchonykh [Collection of materials of the XX International interuniversity scientific and practical conference of students, undergraduates, postgraduates and young scientists]. April 26-28, 2017. Moscow, 2016, pp. 896-898. (In Russian).
    5. Hoang Minh Duc, Nguyen Tuan Nam. Improve protection of reinforced concrete in the marine environment by silica fume [Снижение проницаемости бетона и возможность защиты стальной арматуры в морской среде с помощью микрокремнезема]. Scientific Conference on 50th anniversary of the Institute of Science and Technology [50-я научная конференция Института науки и технологии строительства]. Hanoi, 2013, pp. 100-109. (In Vietnam).
    6. Safarov K. B., Stepanova V. F. Regulation reactivity of aggregates and increase sulphate concretes by joint application of low-calcium fly ash and highly active metakaolin. Stroitel'nyye materialy, 2016, no. 5, pp. 70-74. (In Russian).
    7. Ngo Xuan Hung, Tang Van Lam, Bulgakov B.I., Aleksandrova O. V., Larsen O. A., Ha Hoa Ky, Melnikov A. I. Effect of rice husk ash on the properties of hydraulic concretes. Vestnik MGSU, 2018, vol. 13, iss. 6(117), pp. 768-777. DOI: 10.22227/1997-0935.2018.6.768-777. (In Russian).
    8. Lam Van Tang, Bulgakov B., Aleksandrova O., Anh Ngoc Pham, Bazhenov Yu. Effect of rice husk ash on hydrotechnical concrete behavior [Влияние золы рисовой шелухи на свойств гидротехнических бетонов]. IOP Conf. Series: Materials Science and Engineering. Available at: https://doi:10.1088/1757-899X/365/3/032007 (accessed 5.10.2018).
    9. Safarov K. B., Stepanova V. F., Falikman V. R. Effect of mechanically activated low-calcium fly ash on the corrosion resistance of hydrotechnical concretes of Rogun Hydropower Plant. Stroitel'nye materialy, 2017, no. 10, pp. 20-24. (In Russian).
    10. Safarov K. B. Use of reactive aggregates to obtain concretes resistant in aggressive media. Stroitel'nyye materialy, 2015, no. 7, pp. 17-21. (In Russian).
    11. Pham Huu Hanh, Nguyen Van Tuan. Research and manufacture of high performance concrete building capacity in marine, concrete gravity [Исследование и производство высококачественного бетона, используемого в морских работах]. Seminar "Some new achievements in the study of modern construction materials" [Совместный Междунар. науч. симпозиум "Научные достижения в исследованиях новых современных строительных материалов"]. Hanoi, 2006, pp. 46-63. (In Vietnam).
    12. Pham Huu Hanh, Le Trung Thanh. Concrete for marine structures [Бетон для морских сооружений]. Hanoi, 2015. 216 p. (In Vietnam).
    13. Quy Nhu Nguyen. Studying the effect of additives finely powdered limestone and fly ash thermal power to the properties of the concrete mix pump [Изучение влияния добавок мелкодисперсного известняка и топливной золы-уноса на свойства бетонной смеси, транспортируемой с помощью насоса]. Construction Magazine. Hanoi, 2007, no. 3, pp. 41-44.
    14. Van V. T. A., Roler C., Bui D. D., Ludwig H. M. Rice husk ash as both pozzolanic admixture and internal curing agent in ultra-high performance concrete [Зола рисовой шелухи в качестве пуццолановой добавки и внутреннего цементирующего агента высококачественного бетона]. Cement and Concrete Composites, 2014, vol 53, pp. 270-278.
    15. Si-Huy Ngo, Trong-Phuoc Huynh, Thanh-Tam Thi Le, Ngoc-Hang Thi Mai. Effect of high loss on ignition-fly ash on properties of concrete fully immersed in sulfate solution [Влияние прокаленной золы-уноса на свойства бетона, полностью погруженного в раствор сульфата]. IOP Conf. Series: Materials Science and Engineering. DOI:10.1088/1757-899X/371/1/012007.
    16. Sahmaran M., Kasap O., Duru K., Yaman I.O. Effects of mix composition and water-cement ratio on the sulfate resistance of blended cements [Влияние состава смеси и водоцементного соотношения на сульфатную стойкость вяжущих веществ]. Cem. Concr. Compos, 2007, no. 29, pp. 159-167. Available at: https://doi.org/10.1016/j.cemconcomp.2006.11.007 (accessed 12.10.2018).
    17. Chindaprasirt P., Kanchanda P., Sathonsaowaphak A. Cao H.T. Sulfate resistance of blended cements containing fly ash and rice husk ash [Сульфатостойкость вяжущих веществ, содержащих золу-уноса и золу рисовой шелухи]. Constr. Build. Mater, 2007, no. 21, pp. 1356-1361. Available at: https://doi.org/10.1016/j.conbuildmat.2005.10.005 (accessed 12.10.2018).
    18. Sumer M. Compressive strength and sulfate resistance properties of concretes containing class F and class C fly ashes [Прочность при сжатии и сульфатостойкость бетонов, содержащих золу-уноса классов F и C]. Constr. Build. Mater, 2012, no. 34, pp. 531-536. Available at: https://doi.org/10.1016/j.conbuildmat.2012.02.023 (accessed 12.10.2018).
    19. Torii K., Taniguchi K., Kawamura M. Sulfate resistance of high fly ash content concrete [Сульфатостойкость бетона с высоким содержанием золы-уноса]. Cem. Concr. Res, 1995, no. 25, pp. 759-768. Available at: https://doi.org/10.1016/0008-8846(95)00066-L (accessed 12.10.2018).
    20. Irassar E. F., Maio A. D., Batic O. R. Sulfate attack on concrete with mineral admixtures [Сульфатное воздействие на бетон с минеральными добавками]. Cem. Concr. Res, 1996, no. 26, pp. 113-123. Available at: https://doi.org/10.1016/0008-8846(95)00195-6 (accessed 12.10.2018).
    21. ACI 211.4R-2008. Guide for selecting proportions for high-strength concrete with portland cement and fly ash [Руководство по подбору составов высокопрочного бетона с портландцементом и золой-уноса]. 2010. 13 p.
    22. Tang Van Lam, Bulgakov B. I., Alexandrova O. V. Mathematical modeling of the impact of raw material composition on compressive strength of high performance fine-grained concrete. Vestnik MGSU, 2017, vol. 9 (108), pp. 999-1009. DOI: 10.22227/1997-0935.2017.9.999-1009 (In Russian).
    23. Tuyen Minh Nguyen. Planning of the experiment [Планирование эксперимента]. Hanoi, Publ. of Science and Technology, 2007. 264 p. (In Vietnam).
    24. Astakhova L. G. Lektsii po distsipline "Matematicheskaya teoriya planirovaniya eksperimenta" [Lectures on the subject "The mathematical theory of experiment planning"]. Vladikavkaz, 2013. 96 p. (In Russian).
    25. Abomelik T. P. Metodologiya planirovaniya eksperimenta [The methodology of experiment planning]. Sbornik laboratornykh rabot dlya studentov spetsial'nosti 210201.65 [Collection of laboratory works for students of a specialty 210201.65]. Ul'yanovsk, 2006. 37 p. (In Russian).
    26. Yoshitake I., Komure H., Nassif A.Y., Fukumoto S. Tensile properties of high volume fly-ash concrete with limestone aggregate [Прочностные свойства бетона, высоконаполненного золой-уноса, на известняковом заполнителе]. Construction and Building Materials, 2013, no. 49, pp. 101-109.
    27. Tang Van Lam, Bulgakov B., Aleksandrova O., Larsen O., Pham Ngoc Anh. Effect of rice husk ash and fly ash on the compressive strength of high performance concrete [Влияние золы рисовой шелухи и золы-уноса на прочность при сжатии высококачественного бетона]. E3S Web of Conferences 33. Available at: https://doi.org/10.1051/e3sconf/20183302030 (accessed 12.10.2018).
    28. Bol'shev L. N., Smirnov N. V. Tablitsy matematicheskoy statistiki [Tables of mathematical statistics]. Moscow, Nauka Publ., 1983. 416 p. (In Russian).
  • For citation: Tang Van Lam, Ngo Xuan Hung, Vu Kim Dien, Nguyen Trong Chuc, Bulgakov B. I., Bazhenova O. Yu., Galtseva N. A. Effect of Water-Binder Ratio and Complex Organic-Mineral Additive on Properties of Concrete for Marine Hydrotechnical Constructions. Promyshlennoye i grazhdanskoye stroitel'stvo [Industrial and Civil Construction], 2019, no. 3, pp. 11-21. (In Russian). DOI: 10.33622/0869-7019.2019.03.11-21.


BACK