Издаётся с сентября 1923 года
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • ОСНОВАНИЯ И ФУНДАМЕНТЫ, ПОДЗЕМНЫЕ СООРУЖЕНИЯ
  • Моделирование фильтрации двухчастичной суспензии в пористой среде
  • УДК 624.131 DOI: 10.33622/0869-7019.2022.02.31-35
    Галина Леонидовна САФИНА, кандидат физико-математических наук, доцент, зав. кафедрой фундаментального образования филиала НИУ МГСУ в г. Мытищи, e-mail: minkinag@mail.ru
    ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), 129337 Москва, Ярославское ш., 26
    Аннотация. Фильтрация суспензии в пористой среде, образующей осадок и тем самым меняющей ее свойства, определяет эффективность технологических процессов при строительстве подземных тоннелей в слабых водонасыщенных грунтах. Рассмотрена задача одномерной глубинной фильтрации двухчастичной суспензии для случая, когда уравнения в частных производных, описывающие закон сохранения масс, содержат функцию допустимой пористости и функцию допустимого фракционного потока. В работе моделируется процесс фильтрации суспензии, состоящей из частиц двух типов, с размерным механизмом захвата частиц. Отличительной особенностью предложенной модели является наличие в уравнении баланса масс взвешенных и осажденных частиц функций допустимой пористости и допустимого фракционного потока, которые зависят от концентрации полного осадка. Приведено численное решение бинарной модели, проанализировано поведение графиков профилей частичных и полного осадков: концентраций осажденных частиц различных размеров и полного осадка в зависимости от координаты при фиксированном времени. Показано, что осадок распределяется в пористой среде неравномерно, распределение зависит от размера частиц.
    Ключевые слова: фильтрация, пористая среда, взвешенные и осажденные частицы, двухчастичная суспензия, концентрации частичных осадков и полного осадка.
  • ЛИТЕРАТУРА
    1. Petrenko V., Bannikov D., Netesa M. Geophysical studies and strengthening a layered and water-saturated soil mass in the Kyiv metro conditions [Геофизические исследования и укрепление слоистого и водонасыщенного грунтового массива в условиях Киевского метрополитена]. Bridges and tunnels Theory Research Practice, 2020, vol. 17, pp. 62-72.
    2. Yang P., Yuan Y.-H., She C. G. et al. Temperature study on artificial soil freezing reinforcement for shield entry in Ji Tsing-men station of Nanjing metro [Температурное исследование усиления искусственного промерзания грунта для входа в щит на станции Цзи Цинмэнь метро Нанкин]. Journal of PLA University of Science and Technology (Natural Science Edition), 2009, vol. 10(6), pp. 591-596.
    3. Manassero V., Cavuoto F., Corbo A. Rock grouting and ground freezing for tunnelling at Duomo subway station in Naples [Укрепление горных пород и замораживание грунта для проходки туннелей на станции метро Duomo в Неаполе]. Tunnels and Underground Cities: Engineering and Innovation meet Archaeology, Architecture and Art, 2020, vol. 4, pp. 1379-1388.
    4. Morey J., Campo D. W. Quality control of jet grouting on the Cairo metro [Контроль качества струйной цементации в Каирском метро]. Proceedings of the Institution of Civil Engineers Ground Improvement, 1999, vol. 3(2), pp. 67-75.
    5. Njock P. G. A., Chen J., Modoni G., Arulrajah A., Kim Y.-H. A review of jet grouting practice and development [Обзор практики и развития струйной цементации]. Arabian Journal of Geosciences, 2018, vol. 11(16), pp. 1-31.
    6. Manne A., Prasad P. V. S. R., Annam M. K. Application of jet grouting for geotechnical challenges [Применение струйной цементации для решения геотехнических задач]. Construction in Geotechnical Engineering, 2020, vol. 84, pp. 565-577.
    7. Croce P., Modoni G., Russo G. Jet-Grouting Performance in Tunnelling [Эффективность струйной цементацим при прокладке туннелей] GeoSupport 2004: Drilled Shafts, Micropiling, Deep Mixing, Remedial Methods, and Specialty Foundation Systems, 2004, vol. 124, pp. 910-920.
    8. Kuzmina L. I., Osipov Yu. V., Zheglova Yu. G. Analytical model for deep bed filtration with multiple mechanisms of particle capture [Аналитическая модель глубокой фильтрации с несколькими механизмами захвата частиц]. International Journal of Non-Linear Mechanics, 2008, vol. 105, pp. 242-248.
    9. Kuzmina L. I., Osipov Y. V., Gorbunova T. N. Asymptotics for filtration of polydisperse suspension with small impurities [Асимптотика фильтрации полидисперсной суспензии с мелкими примесями]. Applied Mathematics and Mechanics (English Edition), 2021, vol. 42(1), pp. 109-126.
    10. Сафина Г. Л. Решение задачи фильтрации численными методами // Вестник гражданских инженеров. 2019. № 4(75). C. 68-73.
    11. Галагуз Ю. П., Сафина Г. Л. Моделирование фильтрации частиц на выходе пористой среды // Современные наукоемкие технологии. 2018. № 9. C. 45-50.
    12. Галагуз Ю. П., Сафина Г. Л. Моделирование процесса вытеснения суспензии // Вестник МГСУ. 2018. Т. 13(8). C. 944-951.
    13. Khuzhayorov B., Fayziev B., Ibragimov G., Arifin N. A deep bed filtration model of two-component suspension in dual-zone porous medium [Модель глубокой фильтрации двухкомпонентной суспензии в двухзонной пористой среде]. Applied Sciences, 2020, vol. 10(8), pp. 1-13.
    14. Сафина Г. Л. Расчет профилей осадка двухчастичной суспензии в пористой среде // Промышленное и гражданское строительство. 2020. №. 11. С. 110-114.
    15. Kuzmina L. I., Nazaikinskii V. E., Osipov Y. V. On a deep bed filtration problem with finite blocking time [О проблеме фильтрации в глубоком слое с конечным временем блокировки]. Russian Journal of Mathematical Physics, 2019, vol. 26(1), pp. 130-134.
    16. Nazaikinskii V. E., Bedrikovetsky P. G., Kuzmina L. I., Osipov Y. V. Exact solution for deep bed filtration with finite blocking time [Точное решение для глубинной фильтрации с конечным временем блокировки]. SIAM Journal on Applied Mathematics, 2020, vol. 80(5), pp. 2120-2143.
    17. Kuzmina L. I., Osipov Yu. V., Astakhov M. D. Filtration of 2-particles suspension in a porous medium [Фильтрация двухчастичной суспензии в пористой среде]. Journal of Physics: Conference Series, 2021, vol. 1926, p. 012001.
    18. Courant R., Friedrichs K., Lewy H. Ьber die partiellen Differenzengleichungen der mathematischen Physik [Об уравнениях частичных разностей математической физики]. Mathematische Annalen, 1928, vol. 100(1), pp. 32-74.
  • Для цитирования: Сафина Г. Л. Моделирование фильтрации двухчастичной суспензии в пористой среде // Промышленное и гражданское строительство. 2022. № 2. C. 31-35. DOI: 10.33622/0869-7019.2022.02.31-35.


НАЗАД