BACK
- WATER SUPPLY, SEWERAGE, SYSTEMS OF WATER RESOURCES PROTECTION
- Method Of Calculation Of Engineering Structures Of Soil Filtration For Surface Runoff
- UDC 628.3
doi: 10.33622/0869-7019.2025.01.55-61
Elena S. GOGINA1,2, gogina-es@yandex.ru
Andrey V. FEVRALSKIKH1,3, a.fevralskih@gmail.com
Olga V. FEVRALSKIKH1,2, olgafevralskih@yandex.ru
Elena V. SPASIBO1, spasibo.elena@mail.ru
1 Research Institute of Construction Physics of the Russian Academy of Architecture and Construction Sciences, Lokomotivnyy proezd, 21, Moscow 127238, Russian Federation
2 Sergo Ordzhonikidze Russian State University for Geological Prospecting, GSP-7, ul. Miklukho-Maklaya, 23, Moscow 117997, Russian Federation
3 Moscow Aviation Institute, Volokolamskoe schosse, 4, Moscow 125993, Russian Federation
Abstract. To manage surface runoff in order to partially replenish the volume of groundwater and the expected economic effect of reducing the length of storm sewer pipelines, issues of dumping surface runoff onto the terrain are being considered. The use of soil filtration engineering structures based on soil purification methods is proposed. A method for calculating the volume of engineering structures of soil filtration for several layers of different types of soil is presented. The process of filtration of water in the ground column belongs to the category of slow hydromechanical processes, the typical time of which is calculated in days. Based on this, this process is considered in a quasi-stationary approximation. Two variants of calculation of soil filtration structures of different design are presented. The developed calculation method makes it possible to design engineering structures for soil filtration, taking into account the optimal value of the thickness of the backfill layers in terms of minimizing the field area.
Keywords: engineering structures of soil filtration, surface wastewater, filtration fields, methods of soil purification, filtration columns, filtration coefficient - REFERENCES
1. Yancen O. V., Gogina E. S., Kolosova K. G., Spasibo E. V. Rainwater reuse opportunities. Prirodoobustrojstvo, 2023, no. 5, pp. 73-80. (In Russ.). doi: 10.26897/1997601120235-73-80
2. Liu T. et al. Low impact development (LID) practices: a review on recent developments, challenges and prospects. Water, Air & Soil Pollution, 2021, vol. 232, no. 9, pp. 344.
3. Zhou Q. A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water, 2014, vol. 6, no. 4, pp. 976-992.
4. Wong T. H. F. Water sensitive urban design-the journey thus far. Australasian Journal of Water Resources, 2006, vol. 10, no. 3, pp. 213-222.
5. Briгo V. B., Cadore J. S., Graciola S. et al. Rainwater for drinking purposes: an overview of challenges and perspectives. WIREs Water, 2024, no. 11(5). doi: 10.1002/wat2.1746
6. Xu J. et al. Urban rainwater utilization: A review of management modes and harvesting systems. Frontiers in Environmental Science, 2023, vol. 11, pp. 1025665.
7. Park S. Y. et al. Combined effects of substrate depth and vegetation of green roofs on runoff and phytoremediation under heavy Rain. Water, 2022, vol. 14, no. 18, pp. 2792.
8. Rashid R. A., Rahman R. A., Rasid R. A. Biofilm and multimedia filtration for rainwater treatment. Journal of Sustainable Development, 2009, vol. 2, no 1, pp. 196-199.
9. Teixeira C. A., Ghisi E. Comparative analysis of granular and membrane filters for rainwater treatment. Water, 2019, vol. 11, no 5, pp. 1004.
10. Atrep'eva L. V., Leonidova I. Yu. Improvement of wastewater treatment technology using soil biosubstrates. Biotekhnologiya i biomedicinskaya inzheneriya. Materialy nauch.-prakt. konf. [Biotechnology and biomedical engineering. Materials of the Scientific and practical conference. (Kursk, December 24-25)]. Kursk, 2018, pp. 56-58. (In Russ.).
11. Kovaleva O. V., Il'yasov O. R., Kostomahin N. M. Assessment of the degree of wastewater treatment in filtration fields. APK: innovacionnye tekhnologii, 2024, no.1. Available at: https://cyberleninka.ru/article/n/otsenka-stepeni-ochistki-stochnyh-vod-poley-filtratsii (accessed 24.11.2024). (In Russ.).
12. Nepra A. S., Leonov I. S., Kidenko N. S. Linear water absorbers and vertical absorption wells and boreholes. XXVIII Mezhdunar. nauchn. konf. "Tekhnokongress". Sb. st. [XXVIII International Scientific Conference "Technocongress". Collection of articles (Kemerovo, July 2, 2018)]. Kemerovo, Pluton Publ., 2018, pp. 17-19. (In Russ.).
13. Plemedyale V. The degree of pollution and degradation of soils during the accumulation and storage of wastewater in filtration fields. Stiinta Agricola, 2005, no. 2, pp. 15-18. (In Russ.).
14. Lalomov D. A., Glazunov V. V. Estimation of the filtration coefficient of sandy-clay soils based on the joint interpretation of these methods of resistance and geolocation. Zapiski Gornogo institute, 2018. Available at: https://cyberleninka.ru/article/n/otsenka-koeffitsienta-filtratsii-peschano-glinistyh-gruntov-na-osnove-sovmestnoy-interpretatsii-dannyh-metodov-soprotivleniya-i (accessed 31.10.2024). (In Russ.).
15. Lekhov V. A., Sokolov V. N. Experimental determination of filtration coefficient and diffusion coefficient in poorly permeable sediments. Geoekologiya. Inzhenernaya geologiya, gidrogeologiya, geokriologiya, 2017, no. 3, pp. 67-75. (In Russ.).
16. Slavnov E. V., Shakirov N. V., Sudakov A. I., Buzmakova S. V. Determination of the effective filtration coefficient of a two-component mixture. AVU, 2008, no. 9. Available at: https://cyberleninka.ru/article/n/opredelenie-effektivnogo-koeffitsienta-filtratsii-dvuhkomponentnoy-smesi (accessed 31.10.2024). (In Russ.).
17. Fedotov D. A., Shalamov V. V. Mathematical modeling of liquid filtration in a porous medium. Problemy geologii i osvoeniya nedr. Trudy XXII Mezhdunar. simpoziuma [Problems of geology and subsoil development. Proc. of the XXII International the Symposium (Tomsk, April 2-7, 2018).]. Vol. 2. Tomsk, 2018, pp. 705-707. (In Russ.).
18. Strelkov A. K., Buhman N. S., Teplyh S. Yu. et al. Dynamics of infiltration of liquid contaminants into the porous body of a ballast prism of a railway track within the framework of Forchheimer's law. Vodosnabzhenie i sanitarnaya tekhnika, 2024, no.1, pp. 52-60. (In Russ.).
19. Gasanov I. R., Dzhamalbekov M. A. A generalized method for interpreting the data of hydrogasdynamic studies with nonlinear filtration laws, taking into account the influence of the initial gradient. Vestnik nauki i obrazovaniya, 2020, no. 3-1(81), pp. 97-101. (In Russ.).
20. Gasanov I. R. On the issue of studying the influence of inertial forces under the binomial filtration law. Nauki o Zemle, 2017, no. 3, pp. 26-30. (In Russ.). - For citation: Gogina E. S., Fevralskikh A. V., Fevralskikh O. V., Spasibo E. V. Method of Calculation of Engineering Structures of Soil Filtration for Surface Runoff. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2025, no. 1, pp. 55-61. (In Russ.). doi: 10.33622/0869-7019.2025.01.55-61
BACK