BACK
- BUILDING MATERIALS AND PRODUCTS
- The Influence Of The Structure Of A Radiation-Protective Material On Its Radiation Resistance
- UDC 699.887
doi: 10.33622/0869-7019.2025.01.42-46
Vasily D. CHERKASOV1, vd-cherkasov@yandex.ru
Vladimir I. RIMSHIN2,3, v.rimshin@niisf.ru
Dmitry V. CHERKASOV1, dv-cherkasov@yandex.ru
1 National Research Ogarev Mordovia State University, ul. Bolshevistkaya, 68, Saransk 430005, Russian Federation
2 Research Institute of Construction Physics of the Russian Academy of Architecture and Construction Sciences, Lokomotivnyy proezd, 21, Moscow 127238, Russian Federation
3 National Research Moscow State Civil Engineering University, Yaroslavskoye shosse, 26, Moscow 129337, Russian Federation
Abstract. Building structures located in the radiation exposure area themselves become a source of radiation. Existing decontamination methods are quite complex and ineffective for processing building structures. This is due to the fact that the surface layer of concrete and metal damage is 1-5 mm. The solution to this problem is seen in the use of radiation-protective coatings, which can be dismantled and disposed of after the accumulation of radionuclides. In this case, damage to building structures does not occur. The radiation-protective properties of the coating depend on the type of filler and the structure of the material. The article examines the influence of the structure of a radiation-protective material on its radiation-protective properties. To do this, atomic force microscopy was used to identify the composition of the phases that determine the structure of the material, which is a mechanical mixture in the form of conglomerates. Phases of various sizes are formed in the structure of the material. Due to this, the material has high radiation protection properties and resistance to radiation.
Keywords: radionuclides, radiation-protective coatings, building structures, radiation resistance, atomic force microscopy - REFERENCES
1. Rimshin V. I., Kalajdo A. V., Semenova M. N. et al. Radiation risks at textile industry enterprises. Izvestiya vuzov. Tekhnologiya tekstil'noj promyshlennosti, 2023, no. 4(406), pp. 185-191. (In Russ.).
2. Rimshin V. I., Kalajdo A. V., Semenova M. N., Borshch V. A. Construction technologies for ensuring radon safety of buildings. Stroitel'nye materialy, 2023, no. 6, pp. 33-38. (In Russ.).
3. Cherkasov V. D., Pil'shchikov V. O., Avdonin V. V., Yurkin Yu. V. Self-adhesive radiation protective coatings. Regional'naya arhitektura i stroitel'stvo, 2019, no. 4 (41), pp. 20-26. (In Russ.).
4. Pavlenko V. I., Yastrebinskij R. N. Polimernye radiacionno-zashchitnye kompozity [Polymer radiation-protective composites ]. Belgorod, BGTU im. V. G. Shuhova Publ., 2009. 219 p. (In Russ.).
5. Bormotov A. N., Proshin A. P., Bazhenov Yu. M. et al. Polimernye kompozicionnye materialy dlya zashchity ot radiacii [Polymer composite materials for protection from radiation]. Moscow, Paleotip Publ., 2006. 272 p. (In Russ.).
6. Pavlenko V. I., Sokolenko I. V., Noskov A. V. Composite material of a new type for complex radiation protection. Himiya i himicheskie tekhnologii, 2015, vol. 6, iss. 58, pp. 66-69. (In Russ.).
7. Pavlenko V. I., Bondarenko G. G., CHerkashina N. I. Development of neutron-protective polymer composites based on finely ground titanium hydride. Perspektivnye materialy, 2016, no. 7, pp. 16-21. (In Russ.).
8. Mikaeva S. A., Mikaeva A. S., Bojchuk M. I. Protective coating for radiation sources. Avtomatizaciya. Sovremennye tekhnologii, 2016, no. 7, pp. 34-36. (In Russ.).
9. Kalajdo A. V., Rimshin V. I., Semenova M. N., Bykov G. S. Analysis of foreign experience in ensuring radon safety of operated buildings (on the example of the USA). Vestnik Vologodskogo gosudarstvennogo universiteta. Seriya: Tekhnicheskie nauki, 2020, no. 4(10), pp. 54-58. (In Russ.).
10. Rimshin V. I., Kalajdo A. V., Semenova M. N. Technology of designing radon-safe buildings. Vestnik Luganskogo gosudarstvennogo pedagogicheskogo universiteta. Seriya 5. Gumanitarnye nauki. Tekhnicheskie nauki, 2022, no. 4(92), pp. 88-93. (In Russ.).
11. Alfimova N. I., Periev S. Yu., Fedorenko A. V. et al. Modern trends in the development of radiation-protective materials science. Vestnik BGTU im. V. G. Shuhova, 2017, no. 4, pp. 20-22. (In Russ.).
12. Azreen N. M., Raizal S. M. et al. Radiation shielding of ultra-high-perfomance concrete with silica sand, amang and lead glass. Construction and Building Materials, 2018, vol.172, pp. 370-377.
13. AbuAlroos N. J., Amin N. A. B., Zainon R. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: a review. Radiation Physics and Chemistry, 2019, vol. 165, pp. 1-7.
14. Abouhaswa A. S., Sayyed M. I. et al. Evaluation of optical and gamma ray shielding features for tungsten-based bismuth borate glasses. Optical Materials, 2020, vol. 106, pp. 1-13. - For citation: Cherkasov V. D., Rimshin V. I., Cherkasov D. V. The Influence of the Structure of a Radiation-Protective Material on Its Radiation Resistance. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2025, no. 1, pp. 42-46. (In Russ.). doi: 10.33622/0869-7019.2025.01.42-46
BACK