Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • BASES AND FOUNDATIONS, UNDERGROUND STRUCTURES
  • Calculation Of The Bearing Capacity Of The Foundation In The Karsted Territory
  • UDC 624.15:628.2
    doi: 10.33622/0869-7019.2023.01.51-57
    Elvira N. EGEREVA, egerevaen@mail.ru
    Varvara A. KIRPICHNIKOVA, varya.kirpichnikova@list.ru
    Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    Abstract. The peculiarity of the calculation of the bearing capacity of a slab monolithic foundation of a sewage treatment plant located in the city of Sevastopol in the conditions of construction on a karsted territory is considered. This topic deserves special attention, since karst areas are widespread on the territory of Russia and belong to areas with special construction conditions. To prevent the collapse of a sewage treatment plant building in the event of the formation of a sinkhole and seismic impacts, it is necessary to take into account the interaction of the building structure and its base. For this purpose, a numerical calculation was performed and the possibility of the formation of a sinkhole in the most unfavorable places was modeled. As compensating constructive measures, the installation of monolithic slab foundations is proposed. According to the results of the numerical calculation of the bearing structure of the building for an emergency, carried out in the LIRA Soft software package, it was revealed that the collapse of the building will not occur as a result of the redistribution of the emerging forces. Monolithic reinforced concrete structures of the foundation are able to perceive all the loads acting on them and ensure the safe operation of the structure considered. The article shows that displacements greater in value than the initial ones do not occur as a result of the redistribution of forces during the normal operation of the object in bearing structures. It is also established that the maximum pressure under the foundation plate does not exceed the calculated resistance of the soil. Thus, a slab monolithic reinforced concrete foundation is able to compensate for the adverse impact of the possible formation of karst-suffusion sinkholes.
    Keywords: sewage treatment plants, foundation calculation, slab monolithic reinforced concrete foundation, karst sinkhole, karst funnel, redistribution of forces, software package LIRA Soft
  • REFERENCES
    1. Shi Y., F., R., H. Characterization of the sinkhole failure mechanism induced by concealed cave: a case study [Характеристика механизма разрушения карстовой воронки, вызванного скрытой полостью]. Engineering Failure Analysis, 2021, vol. 119. doi:10.1016/j.engfailanal.2020.105017
    2. Gutiйrrez F., Benito-Calvo A., Carbonel D. et al. Review on sinkhole monitoring and performance of remediation measures by high-precision leveling and terrestrial laser scanner in the salt karst of the Ebro Valley, Spain [Мониторинг карстовых провалов и выполнения восстановительных мероприятий с помощью высокоточного нивелирования и наземного лазерного сканера в соляном карсте долины Эбро, Испания]. Engineering Geology, 2019, vol. 248, pp. 283-308. doi: 10.1016/j.enggeo.2018.12.004
    3. Xu J., He J., Zhang L. Collapse prediction of karst sinkhole via distributed Brillouin optical fiber sensor [Прогнозирование обрушения карстовой воронки с помощью распределенного волоконно-оптического датчика Бриллюэна]. Measurement, 2017, vol. 100, pp. 68-71. doi: 10.1016/j.measurement.2016.12.046
    4. Sevil J., Gutiйrrez F., Carnicer C. et al. Characterizing and monitoring a high-risk sinkhole in an urban area underlain by salt through non-invasive methods: Detailed mapping, high-precision leveling and GPR [Характеристика и мониторинг карстовой ямы высокого риска в городской местности, залегающей под слоем соли, с помощью неинвазивных методов: детального картирования, высокоточного нивелирования и георадара]. Engineering Geology, 2020, vol. 272. doi: 10.1016/j.enggeo.2017.10.009
    5. Lazorenko G., Kasprzhitskii A., Khakiev Z., Yavna V. Dynamic behavior and stability of soil foundation in heavy haul railway tracks: a review [Динамическое поведение и устойчивость грунтового основания на железнодорожных путях большой протяженности: обзор]. Construction and Building Materials, 2019, vol. 205, pp. 111-136. doi: 10.1016/j.conbuildmat.2019.01.184
    6. Elbaz K., Shen S., Tan Y., Cheng W. Investigation into performance of deep excavation in sand covered karst: a case report [Расследование проведения глубоких земляных работ в карсте, покрытом песком: отчет о конкретном случае]. Soils and Foundations, 2018, vol. 58(4), pp. 1042-1058. doi: 10.1016/j.sandf.2018.03.012
    7. Nam B., Shamet R. A preliminary sinkhole raveling chart [Предварительная схема перемещения карстовой воронки]. Engineering Geology, 2020, vol. 268. doi: 10.1016/j.enggeo.2020.105513
    8. Santolo A., Forte G., Santo A. Analysis of sinkhole triggering mechanisms in the hinterland of Naples (southern Italy) [Анализ механизмов, запускающих карстовые воронки во районах Неаполя (южная Италия)]. Engineering Geology, 2018, vol. 237, pp. 42-45. doi: 10.1016/j.enggeo.2018.02.014
    9. Sevil J., Gutiйrrez F., Zarroca M. et al. Sinkhole investigation in an urban area by trenching in combination with GPR, ERT and high-precision leveling. Mantled evaporite karst of Zaragoza city, NE Spain [Исследование провалов в городской местности путем рытья траншей в сочетании с георадаром, ERT и высокоточным выравниванием. Покрытый эвапоритовым карстом город Сарагоса, Северо-Восточная Испания]. Engineering Geology, 2017, vol. 231, pp. 9-20. doi: 10.1016/j.enggeo.2017.10.009
    10. Tamalavage A., Hengstum P., Louchouarn P. et al. Organic matter sources and lateral sedimentation in a Bahamian karst basin (sinkhole) over the late Holocene: Influence of local vegetation and climate [Источники органического вещества и латеральное осаждение в Багамском карстовом бассейне (воронке) в позднем голоцене: влияние местной растительности и климата]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, vol. 506, pp. 70-83. doi: 10.1016/j.palaeo.2018.06.014
    11. Santo A., Santangelo N., Falco M. et al. Cover collapse sinkhole over a deep buried carbonate bedrock: the case study of Fossa San Vito (Sarno Southern Italy) [Провал обвала покрытия над глубоко погребенной карбонатной породой: тематическое исследование Фосса Сан-Вито (Сарно, Южная Италия)]. Geomorphology, 2019, vol. 345. doi: 10.1016/j.geomorph.2019.106838
    12. Pul S., Senturk M., Ilki A., Hajirasouliha I. Experimental and numerical investigation of a proposed monolithic-like precast concrete column-foundation connection [Экспериментальное и численное исследование предлагаемого монолитного соединения "колонна- фундамент из железобетона"]. Engineering Structures, 2021, vol. 246. doi: 10.1016/j.engstruct.2021.113090
    13. Liu T., Xie Y., Feng Z. et al. Better understanding the failure modes of tunnels excavated in the boulder-cobble mixed strata by distinct element method [Лучшее понимание режимов разрушения туннелей, вырытых в смешанных слоях валуна и булыжника методом отдельных элементов]. Engineering Failure Analysis, 2020, vol. 116. doi: 10.1016/j.engfailanal.2020.104712
    14. Schwendel A. C., Cooper A. H. Meander chute cutoff at an alluvial river facilitated by gypsum sinkholes [Перекрытие извилистого желоба в аллювиальной реке, чему способствуют гипсовые воронки]. Geomorphology, 2021, vol. 393. doi: 10.1016/j.geomorph.2021.107944
    15. Shamet R., Hyun Nam B. Geotechnical Investigation of karst sinkholes using an empirically-based CPT raveling chart [Геотехническое исследование карстовых провалов с использованием эмпирической карты перемещения CP]. Transportation Geotechnics, 2021, vol. 31. doi: 10.1016/j.trgeo.2021.100648
    16. Fabregat I., Gutiйrrez F., Roquй C. et al. Subsidence mechanisms and sedimentation in alluvial sinkholes inferred from trenching and ground penetrating radar (GPR). Implications for subsidence and flooding hazard assessment [Механизмы оседания и осаждения в аллювиальных воронках, полученные с помощью траншейного и проникающих радаров (георадар). Последствия для оценки опасности проседания грунта и затопления]. Quaternary International, 2019, vol. 525, pp. 1-15. doi: 10.1016/j.quaint.2019.09.008
    17. Egereva E., Barmenkov A., Barmenkova A., Tsoroev A. Evaluation of possibility of using crane-beams with increased load capacity in the existing industrial building [Оценка возможности использования кран-балок с повышенной грузоподъемностью в существующем промышленном здании]. IOP Conference Series: Materials Science and Engineering, 2020, vol. 918. doi: 10.1088/1757-899X/918/1/012021
    18. Romanov D., Kaufmann G., Al-Halbouni D. Basic processes and factors determining the evolution of collapse sinkholes - a sensitivity study [Основные процессы и факторы, определяющие развитие обвальных воронок]. Engineering Geology, 2020, vol. 270. doi: 10.1016/j.enggeo.2020.105589
    19. Parise M. Sinkholes, subsidence and related mass movements [Провалы, оседание грунта и связанные с этим массовые перемещения]. Reference Module in Earth Systems and Environmental Sciences, 2020, vol. 11. doi: 10.1016/j.proeps.2015.06.009
    20. Gцkkaya E., Gutiйrrez F., Ferk M., Gцrьm T. Sinkhole development in the Sivas gypsum karst, Turkey [Развитие воронки в гипсовом карсте Сивас, Турция]. Geomorphology, 2021, vol. 386. doi: 10.1016/j.geomorph.2021.107746
  • For citation: Egereva E. N., Kirpichnikova V. A. Calculation of the Bearing Capacity of the Foundation in the Karsted Territory. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2023, no. 1, pp. 51-57. (In Russ.). doi: 10.33622/0869-7019.2023.01.51-57


BACK