Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) Web of Science
  • Constructive Solutions For Monitoring Foundations In The Far North
  • UDC 624.154:620.79.18
    doi: 10.33622/0869-7019.2023.01.43-50
    Alexey A. LARIN1
    Mikhail Yu. FEDOTOV1,2,
    1 Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences (IA&E SB RAS), prospekt Akademika Koptyuga, 1, Novosibirsk 630090, Russian Federation
    2 Research Center of Construction, Research Institute of Building Constructions (TSNIISK) named after V. A. Koucherenko, 2-ya Institutskaya ul., 6, Moscow 109428, Russian Federation
    Abstract. The results of theoretical and experimental researches on the development of the design of a measuring device for organizing a fiber-optic system for online-monitoring of industrial structures in the Far North are described. Based on the results of finite element modeling and taking into account the requirements for the design parameters of measuring devices, it is shown that such a device can be made both on a metal and on a composite substrate. It was found that, taking into account the actual operating conditions, it is currently advisable to use the design of the measuring device based on a steel hexagon. The design of a measuring device based on a metal substrate is proposed as part of measures to ensure the implementation of a system of continuous automated monitoring of the technical condition of production and other facilities taking into account the impact of real operating conditions, including soil thawing. The results of the introduction of the developed measuring device, installed on the pile foundation of an industrial facility, operated in one of the districts of Norilsk, are presented.
    Keywords: fiber-optic monitoring system, metal substrate, finite element model, measuring device, pile foundation, steel hexagon, conditions of the Far North
    1. Samigullin G. H., Lyagova A. A. Analysis of the stress-strain state of pipelines in the conditions of the Far North. Gorny informacionno-analiticheskij byulleten', 2017, no. S5-2, pp. 415-421. (In Russ.).
    2. Poroshina S. S. Thawing of permafrost soils under buildings in Norilsk. Gradostroitel'stvo i arhitektura, 2018, vol. 8, no. 2(31), pp. 65-70. (In Russ.). doi: 10.17673/Vestnik.2018.02.11
    3. Ponomarev A. B. Pile foundations as elements of sustainable construction. Vestnik PNIPU. Seriya: Stroitel'stvo i arhitektura, 2015, no. 1, pp. 103-119. (In Russ.). doi: 10.15593/2224-9826/2015.1.08
    4. Utkin V. S. The work of hanging piles in the ground of the base and their calculation by sediment. Vestnik MGSU, 2018, vol. 13, no. 9 (120), pp. 1125-1132. (In Russ.). doi: 10.22227/1997-0935.2018.9.1125-1132
    5. Malyshkin A. P., Esipov A. V. Numerical studies of the stress-strain state and sediment of pile foundations with a remote Central pile. Vestnik PNIPU. Seriya: Stroitel'stvo i arhitektura, 2016, vol. 7, no. 4, pp. 93-101. (In Russ.). doi: 10.15593/2224-9826/2016.4.09
    6. Telichenko V. I. Comprehensive construction safety. Vestnik MGSU, 2010, no. 4-1, pp. 10-17. (In Russ.).
    7. Travush V. I., Shahraman'yan A. M., Kolotovichev Yu. A. et al. LAKHTA CENTER: automated monitoring of deformations of load-bearing structures and bases. Academia. Arhitektura i stroitel'stvo, 2018, no. 4, pp. 94-108. (In Russ.).
    8. Travush V. I., Shulyat'ev O. A., Shulyat'ev S. O., Shahraman'yan A. M., Kolotovichev Yu. A. Analysis of the results of geotechnical monitoring of the LAKHTA CENTER tower. Osnovaniya, fundamenty i mekhanika gruntov, 2019, no. 2, pp. 15-21. (In Russ.).
    9. Shishkin V. V., Granyov I. V., Shelemba I. S. Domestic experience in the production and application of fiber-optic sensors. Prikladnaya fotonika, 2016, vol. 3, no. 1, pp. 61-75. (In Russ.).
    10. Kuznecov A. S., Dubok V. V., Makushin A. L. et al. Application of point fiber-optic sensors on hydraulic structures of the Zaramagskaya HPP-1 under construction. Izvestiya VNIIG im. B.E. Vedeneeva, 2014, vol. 273, pp. 36-44. (In Russ.).
    11. Vasil'ev S. A., Medvedkov O. I., Korolev I. G., et al. Fiber gratings of refractive index and their application. Kvantovaya elektronika, 2005, vol. 35, no. 12, pp. 1085-1103. (In Russ.).
    12. Dostovalov A. V., Wolf A. A., Bronnikov K. A., Skvortsov M. I., Babin S. A. Femtosecond pulse structuring of multicore fibers for development of advanced fiber lasers and sensors. Proc. Fifth Asian School-Conference on Physics and Technology of Nanostructured Materials, 2020, vol. 312, pp. 221-226.
    13. Starcev O. V., Lebedev M. P., Kychkin A. K. Aging of polymer composite materials in an extremely cold climate. Izvestiya AltGU, 2020, no. 1(111), pp. 41-51. (In Russ.). doi: 10.14258/izvasu(2020)1-06
    14. Babenko F. I., Gerasimov A. A., Rodionov A. K. et al. Evaluation of the performance characteristics of polymer materials and products in cold climate conditions. Vestnik Yakutskogo gosudarstvennogo universiteta, 2006, vol. 3, no. 1, pp. 48-53. (In Russ.).
    15. Kablov E. N., Starcev V. O. System analysis of climate influence on mechanical properties of polymer composite materials according to domestic and foreign sources (review). Aviacionnye materialy i tekhnologii, 2018, no. 2(51), pp. 47-58. (In Russ.). doi: 10.18577/2071-9140-2018-0-2-47-58
    16. ASTRO A521 welded surface strain gauge. Available at: (accessed 17.08.2022). (In Russ.).
  • For citation: Larin A. A., Fedotov M. Yu. Constructive Solutions for Monitoring Foundations in the Far North. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2023, no. 1, p. 43-50. (In Russ.). doi: 10.33622/0869-7019.2023.01.43-50