Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • Membrane Bioreactors In Modernization Of Wastewater Treatment Plants
  • UDC 628.355
    doi: 10.33622/0869-7019.2022.12.54-59
    Nikolay A. MAKISHA,
    Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    Abstract. According to statistics, a significant number of cities in our country have a small population. Most of these treatment plants in these cities require reconstruction. Separate technological and operational parameters of wastewater treatment plants have been studied and analyzed for their possible modernization. With the help of the Capdetworks 4.0 software package, a comparison of technological cleaning schemes before and after reconstruction of treatment facilities was carried out. As a technological scheme after the reconstruction, the scheme of the University of Cape Town with a membrane bioreactor integrated into it was considered. According to the results of the automated calculation, the concentrations of pollutants before and after treatment, the required volumes of biological treatment facilities and specific electricity costs were determined. It is noted that the application of membrane bioreactors made it possible to achieve the required indicators of the quality of wastewater treatment without significantly increasing the required volumes of facilities. However, the negative side was a significant increase in specific electricity costs, which is a limiting factor in the wider use of technologies based on membrane bioreactors for wastewater treatment.
    Keywords: wastewater treatment, membrane bioreactor, reconstruction of treatment facilities, specific energy costs
    1. Abbasi N., Ahmadi M., Naseri M. Quality and cost analysis of a wastewater treatment plant using GPS-X and Capdet-Works simulation programs [Анализ качества очистки и затрат канализационных очистных сооружений, проведенный с помощью программ GPS-X and Capdet-Works]. Journal of Environmental Management, 2021, vol. 284, no. 111993. doi: 10.1016/j.jenvman.2021.111993
    2. Uldeen A., Mohamed A. A., Samia T. S., Aly A. Cost analysis of activated sludge and membrane bioreactor WWTPs using CapdetWorks simulation program: Case study of Tikrit WWTP (middle Iraq) [Анализ затрат реакторов с активным илом и мембранного биореактора очистных сооружений с помощью программы CapdetWorks: исследование на очистных сооружениях г. Тикрита, Ирак]. Alexandria Engineering Journal, 2020, vol. 56, pp. 4659-4667. doi: 10.1016/j.aej.2020.08.023
    3. CapdetWorks V4.0. User's guide. [CapdetWorks V4.0. Руководство пользователя] Hydromantis Environmental Software Solutions Inc. Canada, 2018. 151 p.
    4. Yantsen O. V., Kankhva V. S., Gogina E. S. Management of technical and technological risks of sewage treatment plants at all stages of the life cycle. Biosfernaya sovmestimost': chelovek, region, tekhnologii, 2022, no. 1(37), pp. 97-105. (In Russ.).
    5. Pupyrev E. I., Khar'kina O. V. Ways to ensure effective wastewater treatment. Nailuchshie dostupnye tekhnologii vodosnabzheniya i vodootvedeniya, 2020, no. 5, pp. 54-63. (In Russ.).
    6. Pupyrev E. I., Shiryaevskiy V. L., Gerasimov V. A. Pre-project assessment of the effectiveness of water treatment and precipitation treatment facilities. Vodosnabzhenie i sanitarnaya tekhnika, 2021, no. 7, pp. 41-49. (In Russ.).
    7. Bagheri M., Mirbagheri S. A., Kamarkhani A. M., Bagheri Z. Modeling of effluent quality parameters in a submerged membrane bioreactor with simultaneous upward and downward aeration treating municipal wastewater using hybrid models [Моделирование на базе гибридных моделей качества очищенной воды в погружных мембранных биореакторах с одновременной аэрацией при очистке хозяйственно-бытовых сточных вод]. Desalination and Water Treatment, 2016, vol. 57(18), pp. 8068-8089.
    8. Mao X., Myavagh P. H., Lotfikatouli S. et al. Membrane bioreactors for nitrogen removal from wastewater: a review [Мембранные биореакторы для удаления биогенных элементов из сточных вод: обзор]. Journal of Environmental Engineering, 2020, vol. 146, no. 103120002. doi: 10.1061/(ASCE)EE.1943-7870.0001682
    9. Atkinson S. ZeeLung technology shows its ability to quickly, easily and cost-effectively upgrade existing WWTPs [Технологии ZeeLung для быстрой и эффективной модернизации очистных сооружений]. Membrane Technologies, 2020, vol. 11, no. 5. doi: 10.1016/S0958-2118(20)30191-9
    10. Kulakov A. A. Achievement of BAT in the modernization of small WWTP: technological and constructive solutions. Nailuchshie dostupnye tekhnologii vodosnabzheniya i vodootvedeniya, 2022, no. 1, pp. 51-60. (In Russ.).
    11. Shvetsov V. N., Morozova K. M., Stepanov S. V. Calculation of biological treatment facilities for urban and industrial wastewater in aerotanks with removal of biogenic elements. Vodosnabzhenie i sanitarnaya tekhnika, 2018, no. 9, pp. 26-39. (In Russ.).
    12. Mannina G., Ni B.-J., Ferreira Rebouзas T. et al. Minimizing membrane bioreactor environmental footprint by multiple objective optimization [Снижение экологического ущерба при многофакторной оптимизации мембранных биореакторов]. Bioresource Technology, 2020, vol. 302, no. 122824.
    13. Makisha N. A. Modeling of reconstruction of sewage treatment plants using membrane bioreactors. Ekologiya urbanizirovannykh territoriy, 2020, no. 2, pp. 88-93. (In Russ.).
    14. Judd S., Turan F. Sidestream vs immersed membrane bioreactors: a cost analysis [Напорные и погружные мембранные биореакторы: стоимостной анализ]. Proceedings of Water Environment Federation, 2018, vol. 10, pp. 3722-3733. doi: 10.2175/193864718825136008
    15. Makisha N. A. Determination of model values of costs at sewage treatment plants in case of application of various technological schemes of purification. Vestnik MGSU, 2021, vol. 16, no. 8, pp. 1077-1087. (In Russ.). doi: 10.22227/1997-0935.2021.8.1077-1087
  • For citation: Makisha N. A. Membrane Bioreactors In Modernization of Wastewater Treatment Plants. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2022, no. 12, pp. 54-59. (In Russ.). doi: 10.33622/0869-7019.2022.12.54-59