Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) íà ïëàòôîðìå Web of Science
  • BUILDING MATERIALS AND PRODUCTS
  • 25 Years Of Universal Vacuum Powder Thermal Insulation Panel
  • UDC 691:699.86
    doi: 10.33622/0869-7019.2022.12.22-28
    Muhamed N. KOKOEV, kbagrostroy@yandex.ru
    Kabardino-Balkar State University named after H. M. Berbekov, ul. Chernyshevskogo, 173, Kabardino-Balkarian Republic, Nalchik 360004, Russian Federation
    Abstract. In 2022, industrialized countries, due to dramatically changed political conditions, decided to accelerate the so-called "green" transition in energy. Energy problems are greatly simplified where attention is paid to saving heat and electricity. In this regard, an important place is occupied by improving the efficiency of thermal insulation. In Russia, at the Kabardino-Balkarian State University, 25 years ago, the first vacuum-powder panel in a deformable shell was created for the insulation of buildings. Now vacuum-powder panels are produced in Europe, USA, China, etc. They are used in refrigerators, cars, trains, airplanes, in solar heating systems, etc. Unfortunately, in Russia, the coldest and most extensive country on planet Earth, there is not a single enterprise that would produce these products, the heat-shielding properties of which are 8-10 times higher than those of traditional heat-insulating materials.
    Keywords: "green" transition in energy, vacuum powder panel, thermal insulation efficiency, insulation of buildings
  • REFERENCES
    1. Wind energy in Europe in 2019. Trends and statistics. 2020. Available at: https://windeurope.org/wp-content/uploads/files/about-ind/statistics/WindEurope-Annual-Statistics-2019.pdf (accessed 15.06.2022).
    2. Chinese Government Confirms 24.4 Gigawatts Worth Of New Solar In H1'17. Available at: https://cleantechnica.com/2017/08/08/china-government-confirms-24-4-gw-worth-new-solar-1h17/ (accessed 15.06.2022).
    3. "Tough measures". Europe agreed on the 6th package of sanctions against Russia. 2022. Available at: https://www.gazeta.ru/business/2022/05/31/14927612.shtml (accessed 15.06.2022). (In Russ.).
    4. Markitanova L. I. Problems of disposal of radioactive waste. NIU ITMO. Seriya: Ekonomika i ekologicheskiy menedzhment, 2015, no. 1, pp. 140-146. (In Russ.).
    5. Misnar A. Teploprovodnost' tverdyh tel, zhidkostej, gazov i ih kompoziciy [Thermal conductivity of solids, liquids, gases and their compositions]. Moscow, Mir Publ., 1964. 346 p. (In Russ.).
    6. Thermal properties of Silica aerogels / Enviromental Technology Division of E.O. Lawrence Berkeley National Laboratory. Jul. 5, 2008.
    7. Aerogel based on fiberglass. Available at: https://almalen.ru/aerogel-almalen/aerogel-na-osnove-steklokholsta?ysclid=lbl1axewzt888669746 (accessed 4.10.2022). (In Russ.).
    8. Classic Kit: Dewar's flask. Chemistry World, August 2008, vol 5, no. 8. Available at: https://www.chemistryworld.com/opinion/classic-kit-dewars-flask/3004908. article (accessed 4.10.2022).
    9. Ueston Dzh. Tekhnika vysokogo vakuuma [High Vacuum Technique]. Moscow, Mir Publ., 1988. 325 p. (In Russ.).
    10. Arharov A. M., Belyakov B. P., Mikulin E.I. et al. Kriogennye sistemy. Osnovy proektirovaniya apparatov i ustanovok [Cryogenic systems. Fundamentals of designing devices and installations]. Moscow, Mashinostroenie Publ., 1987. 536 p. (In Russ.).
    11. Pat. RF 2144595. Vakuumnoe teploizolyacionnoe izdelie [Vacuum heat-insulating product]. Kokoev M. N., Fedorov V. T. 1997. Publ. 20.01.2000. (In Russ.).
    12. Kokoev M. N., Fedorov V. T. Heat-insulating product with extremely low material consumption. Stroitel'nye materialy, 1998, no. 9, pp. 10-12. (In Russ.).
    13. Fedorov V. T., Kokoev M. N. Energy-saving vacuum-powder panel for building cladding. Vestnik otdeleniya stroitel'nyh nauk RAASN, 2010, vol. 2, pp. 219-226. (In Russ.).
    14. Kokoev M. N., Fedorov V. T. Influence of the size and shape of a vacuum-powder panel on its thermal conductivity. Vestnik otdeleniya stroitel'nyh nauk RAASN, 2019, vol. 2, pp. 284-290. (In Russ.).
    15. Caps R., Fricke J. Konzepte fuer den Einsatz von evakuierten Daemmungen bei Passivhaeusern. 4 Passivhaus-Tagung, Kassel, Marz 2000.
    16. Caps R., Friscke J. Vakuumdämmungen in der Anvendung. 5 Passivhaus Tagung, Reutlingen, Februar 2001. S. 247-254.
    17. Ferle A. Einsatz von Vacuumdämmung in Hochbau. 8 Europäische Passivhaustagung, 2004. Krems, Austria. S. 171-177.
    18. Armin Binz. Hightech-Materialen von dem Durchbruch. 9 Passivhaus Tagung. Ludvigshafen, 2005. S. 219-224.
    19. Oehler S. Münsterländer Hof renoviert. 9 Internationale Passivhaustagung. Hannover, 2006. S. 57-62.
    20. Danilevskiy L. N. Vacuum thermal insulation and prospects for its use in construction. Available at: http://portal-energo.ru/articles/details/id/668 (accessed 4.10.2022). (In Russ.).
    21. Selyaev V. P., Neverov V. A., Mashtaev O. G., Kiselev N. N. Vacuum insulated panels based on moified diatomite. Available at: https://cyberleninka.ru/article/n/vakuumnye-teploizolyatsionnye-paneli-na-osnove-modifitsirovannogo-diatomita/viewer (accessed 4.10.2022). (In Russ.).
  • For citation: Kokoev M. N. 25 Years of Universal Vacuum Powder Thermal Insulation Panel. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2022, no. 12, ðp. 22-28. (In Russ.). doi: 10.33622/0869-7019.2022.12.22-28


BACK