Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • Dynamic Behavior Of Beams Of Variable Cross-Section Based On Variational Approaches
  • UDC 539.3
    doi: 10.33622/0869-7019.2022.12.04-09
    Boris V. GUSEV1,
    Vasiliy V. SAURIN2,
    1 Russian University of Transport, ul. Obraztsova, 9, str. 9, Moscow 127994, Russian Federation
    2 Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, prospekt Vernadskogo, 101, korр. 1, Moscow 119526, Russian Federation
    Abstract. The boundary value problem of finding the natural frequencies of an inhomogeneous beam in the framework of the Euler-Bernoulli hypotheses is presented. Issues related to various classical variational formulations of the spectral problem arising in the theory of beams are discussed. Particularities of the application of the Hamiltonian principles to boundary-value problems are considered. The method of integro-differential relations, which is an alternative to the classical variational approaches, is discussed. Various bilateral energy quality estimates for approximate solutions that follow from the method of integro-differential relations are proposed. A numerical example shows the advantages of the variational method in problems of free vibrations of inhomogeneous beams. Optimal forms of concrete beams with the maximum first natural frequency are constructed. The proposed two-sided criteria for the quality of the approximate solution make it possible to obtain high-precision solutions for low-dimensional mathematical models.
    Keywords: beam with variable cross-section, natural vibrations, method of integro-differential relations, structural inhomogeneity, linear theory of elasticity, boundary value problem
    1. Rosa M. A., Auciello N. M. Free vibrations of tapered beams with flexible ends [Свободные колебания конических балок с гибкими концами]. Computers & Structures, 1996, vol. 60, no. 2, pp. 197-202.
    2. Cranch E. T., Adler A. Bending vibrations of variable section beams [Изгибные колебания балок переменного сечения]. American Society of Mechanical Engineers, 1956, vol. 23, no. 1, pp. 103-108.
    3. Caruntu D. I. On nonlinear vibration of nonuniform beam with rectangular cross-section and parabolic thickness variation [О нелинейных колебаниях неоднородной балки с прямоугольным поперечным сечением и параболическим изменением толщины]. Solid Mechanics and its Applications, 2000, vol. 73, pp. 109-118.
    4. Chaudhari T. D., Maiti S. K. Modelling of transverse vibration of beam of linearly variable depth with edge crack [Моделирование поперечных колебаний балки линейно-переменной глубины с краевой трещиной]. Engineering Fracture Mechanics, 1999, vol. 63, pp. 425-445.
    5. Auciello N. M. On the transverse vibrations of non-uniform beams with axial loads and elastically restrained ends [О поперечных колебаниях неравномерных балок с осевыми нагрузками и упруго защемленными концами]. International Journal of Mechanical Sciences, 2001, vol. 43, pp. 193--208.
    6. Kostin G. V., Saurin V. V. Integrodifferential relations in linear elasticity [Интегродифференциальные отношения в линейной упругости]. De Gruyter, Berlin, 2012. 280 p.
    7. Kostin G.V., Saurin V. V. Dynamics of solid structures. Method using integrodifferential relations [Динамика твердых структур. Метод с использованием интегродифференциальных отношений]. De Gruyter, Berlin, 2017. 305 p.
    8. Elishakoff I. Eigenvalues of Inhomogeneous Structures: unusual closed-form solutions [Собственные значения неоднородных структур: необычные решения в замкнутой форме]. Boca Raton, FL: CRC Press, 2005. 752 p.
  • For citation: Gusev B. V., Saurim V. V. Dynamic Behavior of Beams of Variable Cross-Section Based on Variational Approaches. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2022, no. 12, рp. 4-9. (In Russ.). doi: 10.33622/0869-7019.2022.12.04-09