Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) íà ïëàòôîðìå Web of Science
  • BASES AND FOUNDATIONS, UNDERGROUND STRUCTURES
  • Determination Of Elastic-Visco-Plastic Parameters Of Soils Based On The Results Of Torsional Shear Tests
  • UDC 624.131.37
    doi: 10.33622/0869-7019.2022.10.45-55
    Zaven G. TER-MARTIROSYAN, ter-martyrosyanzg@mgsu.ru
    Armen Z. TER-MARTIROSYAN, ter-martirosianaz@mgsu.ru
    Vitaly V. SIDOROV, sidorov@mgsu.ru
    Anastasia S. ALMAKAEVA, totilas96@mail.ru
    Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    Abstract. The article discusses the features of processing torsional shear test reports in accordance with Russian and foreign standards, as well as the possibility of determining the parameters of soil viscosity used in rheological models that take into account the development of deformations over time and make it possible to describe them with a high degree of accuracy. Nine shear tests were carried out on a torsional shear device at three normal stresses. The tests were carried out at a constant speed and constant vertical pressure. Loam of solid consistency cut from monolithic cores, which were selected from the construction site of Moscow, were used as soil samples. According to the results of laboratory experiments, the parameters of the strength and viscosity of the soil were determined. Using the new universal rheological model of A. Z. Ter-Martirosyan, graphs of the dependence of shear stress on time were obtained. The article presents a comparison of experimental curves obtained from the results of the torsional shear test and analytical curves obtained on the basis of a rheological model.
    Keywords: shear stress, filtration consolidation, torsional shear, viscosity, rheological soil model
  • REFERENCES
    1. Tercagi K. Osnovaniya mekhaniki gruntov [Foundations of soil mechanics]. Moscow, N.K.P.S. Transpechat' Publ., 1926. 85 p. (In Russ.).
    2. Meschyan S. R. Polzuchest' glinistyh gruntov [Creep of clay soils]. Moscow; Leningrad, Akademiya nauk ArmSSR Publ., 1967. 318 p. (In Russ.).
    3. Cytovich N. A., Sumgin M. I. Osnovaniya mekhaniki merzlyh gruntov [Foundations of the mechanics of frozen soils]. Moscow, Akademiya nauk SSSR Publ., 1937. 432 p. (In Russ.).
    4. Vyalov S. S. Reologicheskie svojstva i nesushchaya sposobnost' merzlyh gruntov [Rheological properties and bearing capacity of frozen soils]. Moscow, Akademiya nauk SSSR Publ., 1959. 190 p. (In Russ.).
    5. Florin V. A. Osnovy mekhaniki gruntov [Fundamentals of soil mechanics]. Moscow; Leningrad, Gosstrojizdat Publ., 1958. Vol. 1. 356 p. (In Russ.).
    6. Maslov N. N. Dlitel'naya ustojchivost' i deformaciya smeshcheniya podpornyh stenok [Long-term stability and displacement deformation of retaining walls]. Moscow, Energiya Publ., 1968. 124 p. (In Russ.).
    7. Maslov N. N. Osnovy mekhaniki gruntov i inzhenernoj geologii [Fundamentals of soil mechanics and engineering geology]. Moscow, Vysshaya shkola Publ., 1982. 511 p. (In Russ.).
    8. Rejner M. Reologiya. Moscow, Nauka Publ., 1965. 224 p. (In Russ.).
    9. Gol'dshtejn M. N. Mekhanicheskie svoystva gruntov [Mechanical properties of soils]. Moscow, Gosstrojizdat Publ., 1977. 256 p. (In Russ.).
    10. Vyalov S. S. Reologicheskie osnovy mekhaniki gruntov [Rheological foundations of soil mechanics]. Moscow, Vysshaya shkola Publ., 1978. 447 p. (In Russ.).
    11. Maslov N. N. Osnovy inzhenernoj geologii i mekhanika gruntov [Fundamentals of Engineering geology and soil mechanics]. Moscow, Vysshaya shkola Publ., 1982. 511 p. (In Russ.).
    12. Meschyan S. R. Eksperimental'nye osnovy reologii glinistyh gruntov [Experimental foundations of clay soil rheology]. Moscow, Gitutyun Publ., 2008. 788 p. (In Russ.).
    13. Ter-Martirosyan Z. G. Mekhanika gruntov [Soil mechanics]. Moscow, ASV Publ., 2009. 552 p. (In Russ.).
    14. Bingham E. C., Green H. Paint, a plastic material and not a viscous liquid. Proc. Amer. Assoc. Testing Materials, II. 1919, pð. 640-676.
    15. Schwedoff T. N. Recherches experimentales sur la cohesion des liquides. I. Rigidité des liquids. Journal de Physiqul, 1889, vol. 8, pp. 341-359.
    16. Ter-Martirosyan A. Z. Vzaimodejstvie fundamentov zdanij i sooruzhenij s vodonasyshchennym osnovaniem pri uchete nelinejnyh i reologicheskih svojstv gruntov [Interaction of foundations of buildings and structures with a water-saturated base when taking into account the nonlinear and rheological properties of soils]. Available at: https://www.dissercat.com/content/vzaimodeistvie-fundamentov-zdanii-i-sooruzhenii-s-vodonasyshchennym-osnovaniem-pri-uchete?ysclid=l92v3zz0iq97857751 (accessed: 17.08.2022).
    17. Ter-Martirosyan A. Z., Manukyan A., Ermoshina L. Yu. Experience of determining the parameters of the elastoviscoplastic soil model. E3S Web. Conf. 2021, vol. 263, pp. 02051. doi: 10.1051/e3sconf/202126302051
    18. Nemilov N. K teorii sypuchih tel [Towards the theory of bulk solids]. Zhurnal ministerstva putej soobshchenij Rossii, 1913, iss. 9.
    19. Bishop A. W. et al. A new ring shear apparatus and its application to the measurement of residual strength. Géotechnique, 1971, vol. 21, no. 4, pp. 273-328. doi: org/10.1680/geot.1971.21.4.273
    20. Bromhead E. N. Mikasa's a simple ring shear apparatus. Ground Engineering, 1979, vol. 15, pp. 40-44.
    21. Hanzawa H., Nutt N., Lunne T. et al. A Comparative study between the NGI direct simple shear apparatus and the Mikasa direct shear apparatus. Soils and Foundations, 2007, vol. 47, Japan, pp. 47-58. doi: org/10.3208/sandf.47.47
    22. Tsubakihara Y., Kishida H. Frictional behaviour between normally consolidated clay and steel by two direct shear type apparatuses. Soils and Foundations, 1993, vol. 33, pp. 1-13. doi: org/10.3208/sandf1972.33.2_1
    23. Liao C. J., Lin H. M., Lee D. H. et al. Study on shear behavior of interbedded sandstone and mudstone slope using ring shear test. ISOPE Proceedings of the Seventeenth International Ofshore and Polar Engineering Conference, 2007, pp. 1601-1606.
    24. Gol'dshtejn M. N. Mekhanicheskie svojstva gruntov. Napryazhenno-deformativnye i prochnostnye harakteristiki [Mechanical properties of soils. Stress-strain and strength characteristics]. Moscow, Strojizdat Publ., 1979. 269 p. (In Russ.).
    25. Maslov N. N. O znachenii pri provedenii opytov na sdvig nekotoryh faktorov [About the significance of some factors during the experiments on the shift]. Svir'stroj, Leningrad, 1935, no. 1U. (In Russ.).
    26. Meschyan S. R. Mekhanicheskie svojstva gruntov i laboratornye metody ih opredeleniya [Mechanical properties of soils and laboratory methods for their determination ]. Moscow, Nedra Publ., 1974. 192 p. (In Russ.).
    27. Bardet J. P. Experimental soil mechanics. News Jersey, Prentice Hall, 1997. 584 p.
    28. Ter-Martirosyan A. Z., Sidorov V. V., Almakaeva A. S. Determination of the interface parameters on the contact of concrete and soil by different methods. IOP Conference Series: Materials Science and Engineering, 2019, vol. 698, iss. 2, pp. 022071. doi:10.1088/1757-899X/698/2/022071
    29. Hammouda F., Boumekik A. Experimental study of the behaviour of interfacial shearing between cohesive soils and solid materials at large displacement. Asian Journal of Civil Engineering, 2006, vol. 7, pp. 63-80.
    30. Lemos L. J. L., Vaughan P. R. Clay - interface shear resistance. Géotechnique, 2000, vol. 50, pp. 55-64. doi: org/10.1680/geot.2000.50.1.55
    31. Skempton A. W. Long-term stability of clay slopes. Fourth rankine lecture. Géotechnique, 1964, vol. 14, pp. 77-101. doi: org/10.1680/geot.1964.14.2.77
    32. Tika T. E., Hutchinson J. N. Ring shear tests on soil from the vaiont landslide slip surface. Géotechnique, 1999, vol. 49, pp. 59-74. doi: org/10.1680/geot.1999.49.1.59
    33. Yoshimine M., Kuwano R., Kuwano J., Ishihara K. Dynamic properties of fine-grained soils in pre-sheared sliding surfaces. Slope Stability Engineering, 1999, vol. 1, pp. 595-600.
    34. Eid H. T., Amarasinghe R. S., Rabie K. H., Wijewickreme D. Residual shear strength of fine-grained soils and soil-solid Interfaces at low effective normal stresses. Canadian Geotechnical Journal, 2015, vol. 52, pp. 198-210. doi: org/10.1139/cgj-2014-0019
    35. Boldyrev G. G. Metody opredeleniya mekhanicheskih svojstv gruntov s kommentariyami k GOST 12248- 2010 [Methods for determining the mechanical properties of soils with comments to GOST 12248- 2010]. Moscow, Prondo Publ., 2014. 812 p. (In Russ.).
    36. Ter-Martirosyan A. Z., Sidorov V. V., Almakaeva A. S. Features and difficulties of determining the contact strength of soil and structural materials. Geotekhnika, 2019, vol. 11, no. 4, pp. 30-41. (In Russ.).
  • For citation: Ter-Martirosyan Z. G., Ter-Martirosyan A. Z., Sidorov V. V., Almakaeva A. S. Determination of Elastic-Visco-Plastic Parameters of Soils Based on the Results of Torsional Shear Tests. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2022, no. 10, ðp. 45-55. (In Russ.). doi: 10.33622/0869-7019.2022.10.45-55


BACK