Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • BUILDING STRUCTURES, BUILDINGS AND FACILITIES
  • Influence Of A Tsunami Wave On Hydrodynamic Pressure During Its Interaction With Construction Objects
  • UDC 627.223.6:699.83
    doi: 10.33622/0869-7019.2022.10.27-31
    Tatyana A. BELASH1, belashta@mail.ru
    Anton D. YAKOVLEV2, anton.yakovlev.94@mail.ru
    1 Research Center of Construction, 2-ya Institutskaya ul., 6, Moscow 109428, Russian Federation
    2 Emperor Alexander I St. Petersburg State Transport University, Moskovskiy prospect, 9, Saint Petersburg 190031, Russian Federation
    Abstract. A large number of coastal areas around the planet are tsunami-prone regions where territories are being developed. Meanwhile, the mechanisms of interaction of tsunami waves with various construction objects have not been fully studied. The paper studies the influence of the maximum hydrodynamic pressure from a tsunami wave on building structures, depending on the height and speed of the wave. With the help of computer simulation of the wave rolling on three different construction objects (a solid building (without openings and open spaces), a building with an open ground floor and a fragment of a bridge structure), it was found that the magnitude of the maximum hydrodynamic pressure depends primarily on the volume of the tsunami wave and its speed. The structural design and the space-planning solution of the building affect the nature of the interaction of the wave with the structure. The presence of open space in the structure increases its resistance to tsunami.
    Keywords: tsunami, wave, hydrodynamic pressure, buildings, bridge
  • REFERENCES
    1. Bethany D. Rinard Hinga. Ring of fire: an encyclopedia of the Pacific Rim's earthquakes, tsunamis, and volcanoes [Огненное кольцо: энциклопедия землетрясений, цунами и вулканов Тихоокеанского региона]. California. ABC-CLIO, 2015. 403 p.
    2. Chock G., Robertson I., Kriebel D., Francis M. Tohoku tsunami-induced building failure analysis with implications for U.S. Tsunami and seismic design codes [Анализ разрушений зданий, вызванных цунами в Тохоку, с учетом последствий цунами в США и сейсмических норм проектирования]. Earthquake Spectra, 2013, vol. 29, no. S1, pp. 99-126. doi: 10.1193/1.4000113
    3. Helal M. A., Mehanna M. S. Tsunamis from nature to physics [Цунами: от природы к физике]. Chaos, Solitons and Fractals, 2008, vol. 36, no. 4, pp. 787-796. doi:10.1016/j.chaos.2007.08.044
    4. Satake K., Rabinovich A., Lu U. K. N., Tinti S. Introduction to "Tsunamis in the World ocean: past, present, and future". Volume I [Введение в "Цунами в Мировом океане: прошлое, настоящее и будущее". Том I]. Pure and Applied Geophysics, 2011, vol. 168, no. 6-7, pp. 963-968. doi: 10.1007/s00024-011-0278-2
    5. Yamada K. Lessons for tsunami: staking our lives on future disaster prevention [Уроки цунами: ставим наши жизни на предотвращение будущих стихийных бедствий]. 18th PARIS Int'l Conference on studies in law, business, economics & interdisciplinary studies (LBEIS-19). Sept. 5-7, 2019. Paris (France). doi: 10.17758/EIRAI6.ED0919107
    6. Pan B., Belyaev N. FLOW-3D software for substantiation the layout of the port water area [Программное обеспечение FLOW-3D для обоснования планировки акватории порта]. IOP Conf. Series: Materials Science and Engineering, 2020, no. 883, pp. 012020. doi: 10.1088/1757-899X/883/1/012020
    7. Maksimov V. V., Nudner I. S., Semenov K. K., Krylatykh E. A. Analytical model of interaction of sea waves with a vertical profile barrier with a stone berm. Proc. Prikladnye tekhnologii gidroakustiki i gidrofiziki [Applied technologies of hydroacoustics and hydrophysics]. St. Petersburg, 2018, May 23-25, pp. 217-219 (In Russ.).
    8. Tsuyoshi I., Ryoichiro A., Takane H. et al. Tsunami analysis method with high-fidelity crustal [Метод анализа цунами с использованием высокоточного кристалла]. Journal of Earthquake and Tsunami, 2017, vol. 11, no. 5, p. 1750018. doi: 10.1142/S179343111750018X
    9. Kozelkov A. S., Kurkin A. A., Pelinovsky E. N. et al. Landslide-type tsunami modelling based on the Navier - Stokes equations [Моделирование цунами оползневого типа на основе уравнений Навье - Стокса]. Journal of Tsunami Society International, 2016, vol. 35, no. 3, pp. 106-144.
    10. Constantin A., Henry D. Solutions and tsunamis [Решения и цунами]. Zeitschrift fur Naturforschung, 2009, vol. 64, no. 1-2, pp. 65-68.
    11. Kuswandi, Triatmadja R., Istiarto. Simulation of scouring around a vertical cylinder due to tsunami [Моделирование обтекания вертикального цилиндра из-за цунами]. Science of Tsunami Hazards, 2017, vol. 36, no. 2, pp. 59-69.
    12. Kuswandi, Triatmadja R., Istiarto. Velocity around a cylinder pile during scouring process due to tsunami [Скорость вокруг цилиндрической сваи во время процесса очистки из-за цунами]. Congress of the Asia Pacific division of the International association for hydro environment engineering and research. At Colombo, Srilanka. Vol. 20.
    13. Lukkunaprasit P., Ruangrassamee A., Thanasisathit N. Tsunami loading on buildings with openings [Нагрузка цунами на здания с отверстиями]. Science of Tsunami Hazards, 2009, vol. 28, no. 5, pp. 303-310.
    14. Yim S. C., Cox D. T., Park M. M. Experimental and computational activities at the Oregon State University NEES Tsunami Research Facility [Экспериментальная и вычислительная деятельность в Исследовательском центре цунами NEES при университете штата Орегон]. Science of Tsunami Hazards, 2009, vol. 28, no. 1, pp. 1-14.
    15. Zhangping W., Robert A. D. Numerical study on mitigating tsunami force on bridges by an SPH model [Численное исследование по смягчению воздействия цунами на мосты с помощью модели SPH]. Journal of Ocean Engineering and Marine Energy, 2016, vol. 2, iss. 3, pp. 365-380. doi: 10.1007/s40722-016-0054-6
    16. Fostera A. S. J., Rossettoa T., Allsopb W. An experimentally validated approach for evaluating tsunami inundation forces on rectangular buildings [Экспериментально подтвержденный подход для оценки силы затопления цунами на прямоугольных зданиях]. Coastal Engineering, 2017, vol. 128, pp. 44-57. doi: 10.1016/j.coastaleng.2017.07.006
    17. ANSYS Fluent Theory Guide [Руководство по теории ANSYS Fluent]. Canonsburg (PA) USA., ANSYS, Inc., 2021. 1028 p.
    18. Yeh H., Li W. Tsunami scour and sedimentation [Смыв цунами и осаждение осадков]. Proc. 4th Intl. conf. on scour and erosion. Tokyo, JP., 2008, pp. 95-106.
    19. Lebedev V. V., Nudner I. S., Belyaev N. D. et al. The formation of the seabed surface relief near the gravitational object [Формирование рельефа поверхности морского дна вблизи гравитационного объекта]. Magazine of Civil Engineering, 2018, no. 3, pp. 120-131. doi: 10.18720/MCE.79.13
    20. Alekseeva A. V., Belyaev N. D., Lebedev V. V. et al. Erosion of the bottom at the gravity platform from the frontal impact of regular waves and currents. Gidrotekhnicheskoe stroitel'stvo, 2018, no. 1, pp. 35-44 (In Russ.).
    21. Kantarzhi I. G., Gubina N. A., Gusarov R. N. The impact of long waves on coastal hydraulic structures. Gidrotekhnicheskoe stroitel'stvo, 2021, no. 2, pp. 48-52 (In Russ.).
  • For citation: Belash T. A., Yakovlev A. D. Influence of a Tsunami Wave on Hydrodynamic Pressure During Its Interaction With Construction Objects. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2022, no. 10, pp. 27-31. (In Russ.). doi: 10.33622/0869-7019.2022.10.27-31


BACK