Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) íà ïëàòôîðìå Web of Science
  • BUILDING STRUCTURES, BUILDINGS AND FACILITIES
  • Thermal Resistance Of External Enclosing Structures At Variable Heat Flow
  • UDC 69.022.3:699.86:51-74:53.096
    doi: 10.33622/0869-7019.2022.10.04-13
    Vladimir T. EROFEEV1, al_rodin@mail.ru
    Tatiana F. ELCHISHCHEVA2, elschevat@mail.ru
    Alexey P. LEVTSEV1, levtzevap@mail.ru
    Elena A. MITINA1, mitinaea@list.ru
    Evgeniy S. LAPIN1, evgeniy-lapin@yandex.ru
    1 National Research Ogarev Mordovia State University, ul. Bolshevistkaya, 68, Saransk 430005, Russian Federation
    2 Tambov State Technical University, ul. Sovetskaya, 106/5, Tambov 392000, Russian Federation
    Abstract. Under operating conditions, the external enclosing structures of buildings are most of the time under the influence of variable heat flow caused by fluctuations in the temperature of the external environment and the coolant. At the same time, the thermal resistance of enclosing structures at low frequencies of heat flow fluctuations does not remain constant. Experimental and theoretical studies of the influence of thermo-physical parameters of three-layer monolithic enclosing structures on the change in thermal resistance under normal conditions and at high humidity are presented. The method of analogies with respect to electrical circuits was used for the study. When composing a system of differential equations, an energy circuit is applied that takes into account the active thermal resistances and thermal capacitances of each layer of the enclosing structure. The solution of the system of such equations was performed by the frequency method according to the developed algorithm. Graphical dependences of amplitude-frequency characteristics, representing an increment of the module of complex thermal resistance, are constructed for four variants of three-layer monolithic panels. It is established that at a low frequency changes in heat flow and temperature, the increment of the complex thermal resistance of the enclosing structure is from 1.42 to 5.68%, depending on its thermo-physical properties, while the humidity of the material can also influence on the thermal resistance.
    Keywords: external enclosing structures of buildings, heat flow, amplitude-frequency response, thermal resistance, analogy method, building material moisture content, frequency method
  • REFERENCES
    1. Erofeev V. T., Elchishcheva T. F., Vatin N. I. et al. Designing structures for exterior walls of buildings at adverse environmental effects. Promyshlennoe i grazhdanskoe stroitel'stvo, 2020, no. 8, pp. 4-15. (In Russ.). doi: 10.33622/0869-7019.2020.08.12-23
    2. Elchishcheva T. F. Dynamics of the content of inpurities in the air of the Central Black Earth region for the design of exterior walling of buildings. Zhilishchnoe stroitel'stvo, 2016, no. 6, pp. 48-51. (In Russ.).
    3. Umnyakova N. P., Cmirnov V. A. Climate change and the content of pollutants in the atmosphere. Biosfernaya sovmestimost: chelovek, region, tekhnologii, 2021, no. 2(34), pp. 34-51. (In Russ.). doi: 10.21869/2311-1518-2021-34-2-34-51
    4. Zakharevich A. E. The influence of the daily fluctuations of outside air temperature on the indoor climate. Nauka i tekhnika, 2016, vol. 15, no. 6, pp. 476-480. (In Russ.).
    5. Umnyakova N. P. Calculation of temperature fluctuations in brick cladding of three-layer walls based on ho. Stroitel'nyye materialy, 2016, no. 8, pp. 45-50. (In Russ.).
    6. Vatin N. I., Gorshkov A. S., Nemova D. V. Energy efficiency of envelopes at major repairs. Stroitel'stvo unikal'nyh zdaniy i sooruzheniy, 2013, no. 3, pp. 1-11. (In Russ.).
    7. Beregovoy A. M., Beregovoy V. A. Indicators of microclimate and air exchange in the space-planning structure of a multi-storey residential building. Regional'naya arkhitektura i stroitel'stvo, 2021, no. 2(47), pp. 72-76. (In Russ.).
    8. Gagarin V. G., Zubarev K. P. Mathematical modeling of the non-stationary humidity regime of fences using a discrete-continuum approach. Vestnik MGSU, 2020. vol. 15, no. 2. pp. 244-256. (In Russ.). doi: 10.22227/1997-0935.2020.2.244-256
    9. Kozlov V. V. Questions of accuracy of calculation of the reduced resistance to heat transfer and temperature fields. Stroitel'stvo i rekonstruktsiya, 2018, no. 3(77), pp. 62-74. (In Russ.).
    10. Beregovoi A. M., Beregovoi V. A. Heat loss through external enclosure structures in the stage of their wetting and freezing. IOP Conference Series: Materials Science and Engineering : International Science and Technology Conference "FarEastCon 2019", Vladivostok, October 1-4, 2019. Vladivostok, 2020. doi: 10.1088/1757-899X/753/2/022007
    11. Dulnev G.N., Novikov V.V. Protsessy perenosa v neodnorodnykh sredakh [Transfer processes in inhomogeneous media]. Leningrad, Energoatomizdat Publ., 1991. 248 p. (In Russ.).
    12. Levsev A. P., Lapin E. S., Zhang Q. Increasing the heat transfer efficiency of sectional radiators in building heating systems. Magazine of Civil Engineering. 2019, no. 92(8), pp. 63-75. doi: 10.18720/MCE.92.5
    13. Levtsev A. P., Lysyakov A. I., Lapin E. S., Pankrat'yev R. V. Simulation of heat transfer of a heating device with a pulsating mode of coolant flow. Innovatsii i investitsii, 2019, no. 10, pp. 226-229. (In Russ.).
    14. Chinenkov Yu. V. Calculation of reinforced concrete three-layer enclosing structures made of lightweight concrete. Beton i zhelezobeton, 2007, no. 6, pp. 7-11. (In Russ.).
    15. A. s. SSSR 700490. Sposob formovaniya stroitel'nykh izdeliy [The method of molding building products]. A.V. Nekhoroshev, V. A. Sokolov, V. N. Mamontov et al. Publ. 30.11.1979. Byul. no. 44. (In Russ.).
    16. A. s. SSSR 717886. Kompozitsionnyy material s napravlennoy makrostrukturoy [Composite material with directed macrostructure]. A. V. Nekhoroshev, V. A. Sokolov, V. N. Mamontov et al. Publ. 23.09.1980. Byul. no. 35. (In Russ.).
    17. Pat. Russian Federation 2154135. Sposob izgotovleniya trekhsloynoy paneli [Method for manufacturing a three-layer panel]. V. I. Solomatov, V. T. Erofeev, P. I. Avtayev et al. Publ. 10.08.2000. Available at: https://yandex.ru/patents/doc/RU2154135C1_20000810. (accessed 17.08.2022). (In Russ.).
    18. Pat. Russian Federation 2219316. Sposob izgotovleniya trekhsloynoy paneli [Method for manufacturing a three-layer panel]. V. I. Solomatov, V. T. Erofeev, P. I. Avtayev et al. Publ. 20.12.2003. Available at: https://yandex.ru/patents/doc/RU2219316C2_20031220. (In Russ.).
    19. Pat. Russian Federation 73360. Mnogosloynaya ograzhdayushchaya stenovaya konstruktsiya [Multilayer enclosing wall structure]. V. T. Erofeev, E. A. Mitina, P. I. Novichkov et al. Publ. 20.05.2008. Available at: https://yandex.ru/patents/doc/RU73360U1_20080520. (In Russ.).
    20. Kalashnikov V. I., Erofeev V. T., Moroz M. N. et al. Nanohydrosilicate technologies in the production of concrete. Stroitel'nyye materialy, 2014, no. 5, pp. 88-91. (In Russ.).
    21. Pat. Russian Federation 101723. Dvukhsloynoye stroitel'noye izdeliye [Double layer construction product]. V. T. Erofeev, P. I. Novichkov, V. A. Spirin et al. Publ. 27.01.2011. Byul. no. 3. (In Russ.).
    22. Pat. Russian Federation 102070. Szhatyy stroitel'nyy element [Compressed building element]. V. T. Erofeev, P. I. Novichkov, V. V. Lesnov et al. Publ. 10.02.2011. Byul. no. 4. (In Russ.).
  • For citation: Erofeev V. T., Elchishcheva T. F., Levtsev A. P., Mitina E. A., Lapin E. S. Thermal Resistance of External Enclosing Structures at Variable Heat Flow. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2022, no. 10, ðp. 4-13. (In Russ.) doi: 10.33622/0869-7019.2022.10.04-13


BACK