Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • BASES AND FOUNDATIONS, UNDERGROUND STRUCTURES
  • Particle Dynamics In A Porous Medium
  • UDC 624.131 DOI: 10.33622/0869-7019.2021.10.72-77
    Ludmila I. KUZMINA1, e-mail: lkuzmina@hse.ru
    Yuri V. OSIPOV2, e-mail: osipovyv@mgsu.ru
    Alexandra M. SHAYDULLINA2, e-mail: sshajdullina@yandex.ru
    1 Higher School of Economics, ul. Myasnitskaya, 20, Moscow 101000, Russian Federation
    2 Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    Abstract. When designing tunnels and underground structures, filtration of particles in porous rock has to be considered. Long-term, deep bed filtration of suspensions and colloids in a porous medium leads to the formation of deposit in the pores and a change in the structure of the porous rock framework. The filtration model includes the equation for the balance of the suspended and deposited particles concentrations and the kinetic equation for the deposit growth. The filtration process is determined by the filtration function, which sets the dependence of the deposit growth rate on the retained particles concentration. The type of filtration function depends on the properties of particles, carrier-fluid and porous media. The dynamics (time dependence) of the suspended and deposited particles concentrations is studied for various filtration functions at the point of particles exit from a porous medium. It is shown that at large time intervals the growth rate of both concentrations decreases and tends to zero. For a short time interval, the growth rates of sediment concentration decrease for small particles and increase for large particles, the growth rates of suspended particle concentration increase or decrease depending on the type of filtration function. The conditions for the existence of inflection points on the graphs of the concentration dynamics at the porous medium outlet are obtained.
    Key words: filtration, porous medium, suspended and deposited particles, exact solution, inflection point.
  • REFERENCES
    1. Faramarzi L., Rasti A., Abtahi S. An experimental study of the effect of cement and chemical grouting on the improvement of the mechanical and hydraulic properties of alluvial formations [Экспериментальное исследование влияния цементного и химического закрепителя на улучшение механических и гидравлических свойств аллювиальных пород]. Construction and Building Materials, 2016, vol. 126, pp. 32-43.
    2. Lyapidevskaya O. Grouting mortar for annular injection [Строительный раствор для кольцевого впрыска]. MATEC Web of Conferences, 2018, vol. 251, ID 01004.
    3. Zhang Q., Li P., Zhang X., Li S. et al. Exploration and grouting of large-scale water capsule in the fault fracture zone of Yonglian tunnel. [Исследование и укрепление крупномасштабной водной капсулы в зоне разлома тоннеля Юнлянь]. The Open Civil Engineering Journal, 2015, vol. 9, pp. 32-43.
    4. Tsuji M., Kobayashi S., Mikake S. et al. Post-grouting experiences for reducing groundwater Inflow at 500 m depth of the Mizunami Underground Research laboratory, Japan [Опыт после заливки укрепителем для уменьшения притока подземных вод на глубине 500 м в подземной исследовательской лаборатории Мидзунами, Япония]. Procedia Engineering, 2017, vol. 191, pp. 543-550.
    5. Li S., Liu R., Zhang Q., Zhang X. Protection against water or mud inrush in tunnels by grouting: A review [Защита от попадания воды или грязи в тоннели с помощью укрепителя: обзор]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, vol. 8, pp. 753-766.
    6. Yoon J., Mohtar C. S. E. Groutability of granular soils uing bentonite grout based on filtration model [Возможности укрепления сыпучих грунтов с использованием бентонитового раствора на основе модели фильтрации]. Transport in Porous Media, 2014, vol. 102, pp. 365-385.
    7. Sharma M. M., Yortsos Y. C. Network model for deep bed filtration processes [Сетевая модель для процессов глубинной фильтрации]. AIChE Journal, 1987, vol. 33(10), pp. 1644-1653.
    8. Gitis V., Rubinstein I., Livshits M., Ziskind G. Deep-bed filtration model with multistage deposition kinetics [Модель глубинной фильтрации с многоступенчатой кинетикой осаждения]. Chemical Engineering Journal, 2010, vol. 163, pp. 78-85.
    9. Akhmetov V., Akhmetova V. Convective-diffusion model of particle deposition in modeling of building structures [Конвективно-диффузионная модель осаждения частиц при моделировании строительных конструкций]. MATEC Web of Conferences, 2018, vol. 251, ID 04008.
    10. Chrysikopoulos C. V., Syngouna V. I. Effect of gravity on colloid transport through water-saturated columns packed with glass beads: Modeling and experiments [Влияние силы тяжести на перенос коллоидов через водонасыщенные колонки, заполненные стеклянными шариками: моделирование и эксперименты]. Environmental Science & Technology, 2014, vol. 48, pp. 6805-6813.
    11. Kuzmina L. I., Osipov Yu. V. Calculation of filtration with two particle capture mechanisms. Stroitel'naya mekhanika i raschet sooruzhenij, 2017, vol. 1(270), pp. 59-64. (In Russian).
    12. Ramachandran V., Fogler H. S. Plugging by hydrodynamic bridging during flow of stable colloidal particles within cylindrical pores [Запирание за счет гидродинамической перемычки при течении стабильных коллоидных частиц внутри цилиндрических пор]. Journal of Fluid Mechanics, 1999, vol. 385, pp. 129-156.
    13. Bedrikovetsky P. Mathematical theory of oil and gas recovery with applications to ex-USSR oil and gas fields [Математическая теория добычи нефти и газа с приложениями к месторождениям нефти и газа бывшего СССР, вып. 4]. Springer Science & Business Media, 2013, vol. 4, 575 p.
    14. Herzig J. P., Leclerc D. M., le Goff P. Flow of suspensions through porous media-application to deep filtration [Поток суспензии через пористую среду - применение для глубинной фильтрации]. Industrial & Engineering Chemistry Research, 1970, vol. 62(8), pp. 8-35.
    15. Osipov Yu. V., Zheglova Yu. G. Modeling of transport and capture of particles in a porous medium. Promyshlennoe i grazhdanskoe stroitel'stvo, 2019, no. 11, pp. 56-60. (In Russian). DOI: 10.33622/0869-7019.2019.11.56-60.
    16. Altoe J. E., Bedrikovetsky P. G., Siqueira A. G. et al. Correction of basic equations for deep bed filtration with dispersion [Коррекция основных уравнений глубинной фильтрации с дисперсией]. Journal of Petroleum Science and Engineering, 2006, vol. 51, pp. 68-84.
    17. Kuzmina L. I, Osipov Yu. V., Tsariova V. I. Inverse problem for a linear filtration function. Promyshlennoe i grazhdanskoe stroitel'stvo, 2020, no. 6, pp. 64-68. (In Russian). DOI: 10.33622/0869-7019.2020.06.64-68.
    18. Galaguz Yu. P., Kuzmina L. I., Osipov Yu. V. The filtration problem of suspension in a porous medium with deposit. Izvestiya Rossijskoj akademii nauk. Mekhanika zhidkosti i gaza, 2019, no. 1, pp. 86-98. (In Russian).
    19. Galaguz Yu. P. Implementation of the TVD-scheme for the numerical solution of the filtration problem. International Journal for Computational Civil and Structural Engineering, 2017, vol. 13(2), pp. 93-102. (In Russian).
    20. Galaguz Yu. P., Safina G. L. Modeling filtration in a heterogeneous porous medium. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V. G. Shuhova, 2017, no. 11, pp. 168-172. (In Russian).
    21. Safina G. Numerical solution of filtration in porous rock [Численное решение фильтрации в пористой породе]. E3S Web of Conferences, 2019, vol. 97, ID 05016.
    22. Badalyan A., You Z., Aji K. et al. Size exclusion deep bed filtration: experimental and modelling uncertainties [Глубинная фильтрация с исключением по размеру: экспериментальные и модельные неопределенности]. Review of Scientific Instruments, 2014, vol. 85(1), ID 015111.
    23. Kuzmina L. I., Nazaikinskii V. E., Osipov Yu. V. On a deep bed filtration problem with finite blocking time [О задаче глубинной фильтрации с конечным временем блокировки]. Russian Journal of Mathematical Physics, 2019, vol. 26(1), pp. 130-134.
    24. Vyazmina E. A., Bedrikovetskii P. G., Polyanin A. D. New classes of exact solutions to nonlinear sets of equations in the theory of filtration and convective mass transfer [Новые классы точных решений нелинейных систем уравнений в теории фильтрации и конвективного массопереноса]. Theoretical Foundations of Chemical Engineering, 2007, vol. 41(5), pp. 556-564.
    25. Bizmark N., Schneider J., Priestley R. D., Datta S. S. Multiscale dynamics of colloidal deposition and erosion in porous media [Многоуровневая динамика коллоидного осаждения и эрозии в пористых средах]. Science Advances, 2020, vol. 6(46), eabc2530.
    26. You Z., Osipov Y., Bedrikovetsky P., Kuzmina L. Asymptotic model for deep bed filtration [Асимптотическая модель глубинной фильтрации]. Chemical Engineering Journal, 2014, vol. 258, pp. 374-385.
    27. Polyanin A. D., Chernoutsan A. I. A concise handbook of mathematics, physics, and engineering sciences [Краткий справочник по математике, физике и инженерным наукам]. Boca Raton, London, Chapman & Hall/CRC Press, 2010, 1140 p.
    28. Santos A., Bedrikovetsky P., Fontoura S. Analytical micro model for size exclusion: Pore blocking and permeability reduction [Аналитическая микромодель размерного механизма: блокировка пор и снижение проницаемости]. Journal of Membrane Science, 2008, vol. 308, pp. 115-127.
    29. Badalyan A., Chequer L., Russell T. et al. Uncertainties associated with laboratory-based predictions of well index and formation damage [Неопределенности, связанные с лабораторными прогнозами индекса скважины и повреждения пласта]. Measurement: Journal of the International Measurement Confederation, 2021, vol. 170, 108731, pp. 1-15.
  • For citation: Kuzmina L. I., Osipov Yu. V., Shaydullina A. M. Particle Dynamics in a Porous Medium. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2021, no. 10, pp. 72-77. (In Russian). DOI: 10.33622/0869-7019.2021.10.72-77.


BACK