Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • BUILDING MATERIALS AND PRODUCTS
  • Assessment Of The Corrosive Aggressiveness Of The Atmosphere And Forecast Of Corrosion Losses Of Metals
  • UDC 620.193.2 DOI: 10.33622/0869-7019.2021.10.56-65
    Yulia M. PANCHENKO1, e-mail: panchenkoyum@mail.ru
    Andrey I. MARSHAKOV1, e-mail: a_marshakov@mail.ru
    Timofey N. IGONIN1, e-mail: igonintd@gmail.com
    Tatyana V. NAZMEEVA2, e-mail: t.nazmeeva@steel-development.ru
    1 Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences, Leninsky prospekt, 31, str. 4, Moscow 119071, Russian Federation
    2 Steel Construction Development Association's Engineering Center, ul. Ostozhenka, 19, str. 1, Moscow 119034, Russian Federation
    Abstract. The necessity of revising the domestic normative documents in the field of atmospheric corrosion, atmospheric corrosivity, methods for determining corrosion losses for different periods is shown. Modern approaches to assessing the corrosive aggressiveness of the atmosphere are considered (for large territories/regions according to the description of typical atmospheric operating conditions, for small territories or cities - according to corrosion losses for the first year). A mathematical model is given: "dose-response" functions for predicting corrosion losses of carbon steel for the first year of operation using atmospheric climatic parameters, as well as a power-linear model for predicting long-term corrosion losses corresponding to modern concepts of corrosion kinetics. The coefficients presented in the international standard and developed by domestic researchers are used in the model. It is shown that more reliable results were obtained using the developments of the academic institute not only for the territory of Russia, but also for all regions of the world. A comparative assessment of the mapping of the continental territory of Russia on the corrosion losses of carbon steel for the first year and 50 years is given according to a model with coefficients developed by the institute of the Russian Academy of Sciences and presented in the international standard.
    Key words: regulatory documents, atmospheric corrosion, corrosive aggressiveness, corrosion losses prediction, carbon steel.
  • REFERENCES
    1. Schmitt G. Global needs for knowledge dissemination, research, and development in materials deterioration and corrosion control [Глобальные потребности в распространении знаний, исследованиях и разработках в области контроля износа материалов и коррозии]. World Corrosion Organization, 2009. 44 p.
    2. Rukovodstvo dlya podgotovki inspektorov po vizual'nomu i izmeritel'nomu kontrolyu kachestva okrasochnykh rabot [Guidelines for the training of inspectors for visual and measuring quality control of painting works]. Yekaterinburg, Origami Publ., 2009. 202 p. (In Russian).
    3. Izmeneniya klimata 2016 g. (dekabr' 2015 g. - noyabr' 2016 g.). Obzor sostoyaniya i tendentsiy izmeneniya klimata Rossii [Climate change 2016 year (December 2015 - November 2016). Review of the state and trends of climate change in Russia]. FSBI Institute for Global Climate and Ecology, 2017. 42 p. (In Russian).
    4. Ezhegodnik sostoyaniya zagryazneniya atmosfery v gorodakh na territorii Rossii za 2015 g. [Year book on the state of atmosphere contamination in cities in the territory of Russia in 2015]. St. Petersburg, Rosgidromet Publ., 2016. 255 p. (In Russian).
    5. ISO 9224:2012 Corrosion of metals and alloys - Corrosivity of atmospheres - Guiding values for the corrosivity categories [Коррозия металлов и сплавов. Коррозионная активность атмосферы. Основополагающие значения категорий коррозионной активности].
    6. Tidblad J., Kucera V., Mikhailov A. A. et al. UN ECE ICP Materials. Dose-response functions on dry and wet acid deposition effects after 8 years of exposure [Материалы программы UN ECE ICP: Функции доза-ответ сухих и мокрых кислотных осаждений после 8 лет испытаний]. Water, Air and Soil Pollution, 2001, vol. 130, no. 1-4, pp. 1457-1462.
    7. Tidblad J., Kucera V., Mikhailov A. A. Final Dose-Response functional froms the UN ECE Project in effects of acid deposition affer 8 years of exposure [Финальные функции доза-ответ и анализ трендов проекта UN ECE на эффекты кислотных осаждений]. 14th International Corrosion Congress "Co-operation in Corrosion Control". CD Proc. Cape Town, South Africa. September 1999.
    8. Tidblad J., Kucera V., Mikhailov A. A. Statistical analysis of 8 year materials exposure and acceptable deterioration and pollution levels [Статистический анализ результатов 8-летней экспозиции и приемлемые уровни износа и загрязнения]. UN/ECE ICP on Effects on Materials. Swedish Corrosion Institute. Stockholm, Sweden, 1998. 49 p.
    9. Tidblad J., Mikhailov A. A., Kucera V. Model for the prediction of the time of wetness from average annual data on relative air humidity and air temperature [Модель предсказания времени увлажненности по среднегодовым значениям относительной влажности воздуха и температуры]. Protection of Metals, 2000, vol. 36, pp. 533-540.
    10. Panchenko Yu. M., Marshakov A. I., Nikolaeva L. A., Igonin T. N. Estimating the first-year corrosion losses of structural metals for continental regions of the world [Оценка первогодовых коррозионных потерь конструкционных материалов для континентальных регионов мира]. Civil Engineering Journal, 2020, vol. 6, no. 8, pp. 1503-1519.
    11. Panchenko Yu. M., Marshakov A. I., Bardin I. V., Shklyaev A. V. Use of statistical analysis methods for estimating the reliability of first-year carbon steel and zinc corrosion loss predictions calculated using dose-response functions [Применение статистического анализа для прогноза первогодовых коррозионных потерь углеродистой стали и цинка с помощью функции "доза - ответ"]. Protection of Metals and Physical Chemistry of Surfaces, 2019, vol. 55, no. 4, pp. 753-760.
    12. Panchenko Yu. M., Marshakov A. I. Long-term prediction of metal corrosion losses in atmosphere using a power-linear function [Долгосрочный прогноз коррозионных потерь металлов в атмосфере с помощью линейно-степенной функции]. Corrosion Science, 2016, vol. 109, pp. 217-229.
  • For citation: Panchenko Yu. M., Marshakov A. I., Igonin T. N., Nazmeeva T. V. Assessment of the Corrosive Aggressiveness of the Atmosphere and Forecast of Corrosion Losses of Metals. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2021, no. 10, pp. 56-65. (In Russian). DOI: 10.33622/0869-7019.2021.10.56-65.


BACK