Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • BUILDING MATERIALS AND PRODUCTS
  • Effect Of Fly Ash Content On Strength Of Concretes Based On Sulfate-Resistant Portland Cement
  • UDC 666.972.524 DOI: 10.33622/0869-7019.2021.01.51-58
    Ngo Xuan HUNG1, e-mail: xuanhung1610@gmail.com
    Tang Van LAM2, e-mail: lamvantang@gmail.com
    Boris I. BULGAKOV1, e-mail: BulgakovBI@mgsu.ru
    Olga V. ALEKSANDROVA1, e-mail: AleksandrovaOV@mgsu.ru
    Oksana A. LARSEN1, e-mail: LarsenOA@mgsu.ru
    1 Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    2 Hanoi University of Mining and Geology, 18 Pho Vien, DucThang, Bac Tu Liem, Hanoi, Vietnam
    Abstract. In current work was to investigate the strength kinetics of high-quality concrete with different contents of fly ash and sulphate-resistant Portland cement. In addition, the maximum amount of fly ash in the concrete mixture was determined, which allows obtaining high-quality concrete. Sulphate-resistant Portland cement was used with the addition of fly ash, silica fume and a superplasticizer. Quartz sand and limestone crushed stone were used as aggregates. The shape and size of the particles of raw materials was performed using the method of laser granulometry, while the composition of the concrete mixture was calculated according to american standard. The workability of concrete mixture, the average density of concrete, the compressive and flexural strength of concrete are determined, their water resistance was determined according to russian standarts, research the microstructure of the concrete of the developed compositions was carried out using a scanning electron microscope. The compressive strength of high-quality concrete increases with an increase in the content of fly ash in concrete mixes by a mass of used sulphate-resistant Portland cement. With further growth of content of the fly ash, the strength of concrete was decreased.
    Key words: sulphate-resistant Portland cement, fly ash, silica fume, polycarboxylate superplasticizer, compressive strength, structure density.
  • REFERENCES
    1. Anufriyeva Ye. V. Corrosion resistant concrete for hydraulic engineering. Gradostroitel'nye aspekty ustoychivogo razvitiya krupnykh gorodov [Urban planning aspects of the sustainable development of large cities]. Kharkiv, KNUGH named after A. N. Beketov Publ., 2009, no. 93, pp. 537-541. (In Russian).
    2. Santhanam M., Cohen M. D., Olek J. Differentiating seawater and groundwater sulfate attack on Portland cement mortars [Различное воздействие сульфатов морской воды и подземных вод на портландцементные растворы]. Cement and Concrete Research, 2006, vol. 36(12), pp. 2132-2137. Available at: https://doi.org/10.1016/j.cemconres.2006.09.011 (accessed 20.08.2020).
    3. Chindaprasirt P., Kanchanda P., Sathonsaowaphak A., Cao H. T. Sulfate resistance of blended cements containing fly ash and rice husk ash [Сульфатостойкость смешанных цементов, содержащих золу-уноса и золу рисовой шелухи]. Construction and Building Materials, 2007, no. 21, pp. 1356-1361. Available at: https://doi.org/10.1016/j.conbuildmat.2005.10.005 (accessed 8.09.2020).
    4. Lam Van Tang, Hung Xuan Ngo, Dien Vu Kim, Bulgakov B. I., Aleksandrova O. V. Effect of complex organo-mineral modifier on the properties of corrosion-resistant concrete [Влияние комплексного органо-минерального модификатора на свойства коррозионностойкого бетона]. MATEC Web of Conferences, 2018, no. 251, p. 01005. Available at: https://doi.org/10.1051/matecconf/201825101005 (accessed 12.08.2020).
    5. Si-Huy Ngo, Trong-Phuoc Huynh, Thanh-Tam Thi Le, Ngoc-Hang Thi Mai. Effect of high loss on ignition-fly ash on properties of concrete fully immersed in sulfate solution [Влияние топливной золы-уноса на свойства бетона, полностью погруженного в сульфатный раствор]. IOP Conf. Series: Materials Science and Engineering, 2018, no. 371, p. 012007. DOI:10.1088/1757-899X/371/1/012007.
    6. Santhanam M., Otieno M. Deterioration of concrete in the marine environment [Коррозия бетона в морской среде]. Marine Concrete Structures. Design, Durability and Performance. 2016, pp. 137-149. Available at: https://doi.org/10.1016/B978-0-08-100081-6.00005-2 (accessed 20.08.2020).
    7. Shehata Medhat H., Adhikari Giri, Radomski Shaun. Long-term durability of blended cement against sulfate attack [Длительная работоспособность смешанного цемента в условиях сульфатной коррозии]. ACI Materials Journal, 2008, vol. 105(6), pp. 594-602.
    8. Galan I., Perron L., Glasser F. P. Impact of chloride-rich environments on cement paste mineralogy [Влияние сред с высоким содержанием хлоридов на минералогию цементного теста]. Cement and Concrete Research, 2015, vol. 68, pp. 147-183. Available at: https://doi.org/10.1016/j.cemconres.2014.10.017 (accessed 12.08.2020).
    9. Grigor'yev V. G., Kozlova V. K., Andryushina Ye. Ye. et al. Composite Portland cements for hydraulic engineering. Polzunovskiy vestnik, 2012, no. 1/2, pp. 62-64. (In Russian).
    10. Ngo Van Toan. Research on the production of high-strength concrete using fine sand and mineral additives mixed with activated blast-furnace slag and rice husk ash [Исследования в области получения высокопрочного бетона с использованием мелкого песка и минеральных добавок, смешанных с активированным доменным шлаком и золой рисовой шелухи]. Magazine Building Materials - Environment, 2012, no. 4, pp. 36-45.
    11. Torii K., Taniguchi K., Kawamura M. Sulfate resistance of high fly ash content concrete [Сульфатостойкость бетона с высоким содержанием золы-уноса]. Cement and Concrete Research, 1995, no. 25, pp. 759-768. Available at: https://doi.org/10.1016/0008-8846(95)00066-L (accessed 16.06.2020).
    12. Sumer M. Compressive strength and sulfate resistance properties of concretes containing class F and class C fly ashes [Прочность на сжатие и сульфатостойкость бетонов, содержащих золу-уноса класса F и C]. Construction and Building Materials, 2012, no. 34, pp. 531-536. Available at: https://doi.org/10.1016/j.conbuildmat.2012.02.023 (accessed 8.09.2020).
    13. Ghafoori N., Batilov I., Najimi M., Sharbaf M. R. Sodium sulfate resistance of mortars containing combined nanosilica and microsilica [Устойчивость к сульфату натрия растворов, содержащих комбинацию нанокремнезема и микрокремнезема]. Journal of Materials in Civil Engineering, 2018, vol. 30(7), pp. 1-11. Available at: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002318 (accessed 12.08.2020).
    14. Ben Ju Yang, Qiu Yi Li, Song Gao, Tao Li. Research on the sulfate corrosion-resistance admixture for concrete [Исследование сульфатной коррозионно-стойкой добавки для бетона]. Advanced Materials Research, 2011, vol. 250-253, pp. 327-330. Available at: https://doi.org/10.4028/www.scientific.net/AMR.250-253.327 (accessed 16.06.2020).
    15. Sahmaran M., Kasap O., Duru K., Yaman I. O. Effects of mix composition and water-cement ratio on the sulfate resistance of blended cements [Влияние состава смеси и водоцементного отношения на сульфатостойкость смешанных цементов]. Cement and Concrete Composites, 2007, no. 29, pp. 159-167. Available at: https://doi.org/10.1016/j.cemconcomp.2006.11.007 (accessed 16.06.2020).
    16. Vasil'yeva D. V. Sulfate-resistant Portland cement using burnt rock. Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya molodykh uchenykh BGTU im. V. G. Shukhova [International scientific and technical conference of young scientists BSTU named after V. G. Shukhov], 2017, pp. 1461-1465. (In Russian).
    17. Irassar E. F., Maio A. D., Batic O. R. Sulfate attack on concrete with mineral admixtures [Сульфатная коррозия бетона с минеральными добавками]. Cement and Concrete Research, 1996, no. 26, pp. 113-123. Available at: https://doi.org/10.1016/0008-8846(95)00195-6 (accessed 14.09.2020).
    18. Harish Kizhakkumodom Venkatanarayanan, Prasada Rao Rangaraju P. E. Evaluation of sulfate resistance of Portland cement mortars containing low-carbon rice husk ash [Оценка сульфатостойкости портландцементных растворов, содержащих низкоуглеродистую золу рисовой шелухи]. Journal of Materials in Civil Engineering, 2014, April, pp. 582-592. Available at: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000868 (accessed 30.07.2020).
    19. ACI 211.4R-08. Guide for selecting proportions for high-strength concrete using Portland cement and other cementitious materials [Гид для выбора пропорций для бетона высокой прочности, используя портландцемент и другие цементирующие материалы].
    20. Tang Van Lam, Ngo Xuan Hung, Vu Kim Dien et al. Effect of water-binder ratio and complex organic-mineral additive on properties of concrete for marine hydrotechnical constructions. Promyshlennoe i grazhdanskoe stroitel'stvo, 2019, no. 3, pp. 11-21. DOI: 10.33622/0869-7019.2019.03.11-21. (In Russian).
    21. Lam Van Tang, Bulgakov B., Aleksandrova O., Anh Ngoc Pham, Bazhenov Yu. Effect of rice husk ash on hydrotechnical concrete behavior [Влияние золы рисовой шелухи на поведение гидротехнических бетонов]. IOP Conf. Series: Materials Science and Engineering, 2018, no. 365, p. 032007. Available at: https://doi.org/10.1088/1757-899X/365/3/032007 (accessed 17.09.2020).
    22. Bazhenova S. I. Production of high-quality concrete using structural modifiers based on industrial waste. Tekhnicheskie nauki: problemy i perspektivy: materialy mezhdunar. nauch. konf. [Technical sciences: problems and prospects (Saint Petersburg, March 20-23, 2011)]. 2011, pp. 23-25. (In Russian).
    23. Alimov L. A. et al. Dilatometric method for analyzing the structure of nano-modified concretes. Promyshlennoe i grazhdanskoe stroitel'stvo, 2015, no. 4, pp. 58-61. (In Russian).
  • For citation: Ngo Xuan Hung, Tang Van Lam, Bulgakov B. I., Aleksandrova O. V., Larsen O. A. Effect of Fly Ash Content on Strength of Concretes Based on Sulfate-Resistant Portland Cement. Promyshlennoye i grazhdanskoye stroitel'stvo [Industrial and Civil Engineering], 2021, no. 1, pp. 51-58. DOI: 10.33622/0869-7019.2021.01.51-58. (In Russian).


BACK