Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • BUILDING MATERIALS AND PRODUCTS
  • Research Of The Fractal Structure Of The Interfacial Layer Of Bitumen On The Surface Of Mineral Powder
  • UDC 665.775.4:535.135 DOI: 10.33622/0869-7019.2020.12.86-92
    Svetlana Yu. SHEKHOVTSOVA, e-mail: shehovtsovasyu@mgsu.ru
    Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    Evgeniy V. KOROLEV, e-mail: korolevev@nocnt.ru
    Saint Petersburg State University of Architecture and Civil Engineering, 2-ya Krasnoarmeyskaya ul., 4, Saint Petersburg 190005, Russian Federation
    Abstract. Methods for studying the structure parameters of building materials using fractal sets are considered and analyzed. A method for determining the fractal dimension for the main structuring binary system in asphalt concrete - "mineral filler-bituminous binder" is proposed. The intensity of interaction between the occurring interphase processes was judged by the contact surface area and the adsorption activity of the mineral component. The structure of the binary system was evaluated by the index of resistance to shear force. Using the Einstein equation, the thickness of the adsorption-bound layer was calculated. To study the possible fractal structure of the formed interfacial layer, the method of self-similar structures analysis was used. It is established that at the initial moment of formation of the interphase layer in the binary system "mineral filler-bituminous binder", its strength is characterized by the number of adsorbing molecules and their aggregates, which indicates that the structure of the interfasial layer exhibits fractal properties.
    Key words: fractals, structure, interfacial layer, mineral powder, bituminous binder.
  • REFERENCES
    1. Khaytun S. D. Ot ergodicheskoy gipotezy k fraktalnoy kartine mira. Rozhdenie i osmyslenie novoy paradigmy [From the ergodic hypothesis to the fractal picture of the world. Birth and understanding of a new paradigm]. Мoscow, Kom Kniga Publ., 2007. 256 p. (In Russian).
    2. Feder Е. Fraktaly [Fractals]. Moscow, Mir Publ., 1991. 260 p. (In Russian).
    3. Fraktaly v fizike [Fractals in physics]. Trudy IV Mezhdunarodnogo simpoziuma po fraktalam. Moscow, 1988. 672 p. (In Russian).
    4. Zaytman Dzh. Modeli besporjadka [Models of disorder]. Moscow, Mir Publ., 1982. 591 p. (In Russian).
    5. Mandelbrot B. B. The Fractal geometry nature [Природа фрактальной геометрии]. N.Y., 1983. 327 p.
    6. Fraktaly v prikladnoj fizike [Fractals in applied physics]. Arzamas, 1995. 16 p. (In Russian).
    7. Smirnov B. M. Fizika fraktal'nyh klasterov [Physics of fractal clusters]. Moscow, Nauka Publ., 1991. 160 p. (In Russian).
    8. Jelиiж р., Oceliж Bulatoviж V., Rek V., JurkaУ Markoviж K. Relationship between fractal, viscoelastic, and aging properties of linear and radial styrene-butadiene- styrene polymer-modified bitumen [Взаимосвязь фрактальных, вязкоупругих и стареющих свойств линейного и радиального стирол-бутадиен-стирольного полимер-модифицированного битума]. Journal of Elastomers & Plastics, 2016, vol. 48, no. 1, pp. 14-46.
    9. Villani M. M., Scarpas A., de Bondt A., Khedoe R., Artamendi I. Application of fractal analysis for measuring the effects of rubber polishing on the friction of asphalt concrete mixtures [Применение фрактального анализа для измерения влияния полировки резины на трение асфальтобетонных смесей]. Wear, 2014, vol. 320, no. 1, pp. 179-188.
    10. Hou Y., Sun F., Sun W., Guo M., Xing C., Wu J. Quasibrittle fracture modeling of preflawed bitumen using a diffuse interface model [Моделирование квазибриттового разрушения предварительно расплавленного битума с использованием модели диффузной границы раздела]. Advances in Materials Science and Engineering, 2016, article ID 8751646. Available at: https://doi.org/10.1155/2016/8751646 (accessed 29.09.2020).
    11. Tarasevich B. N. On the fractal structure of interfacial layers. Vestnik Moskovskogo universiteta, iss. 2, khimiya, 1998, vol. 39, no. 2, pp. 132-133. (In Russian).
    12. Li J., Liu Z., Li J. et al. Fractal characteristics of continental shale pores and its significance to the occurrence of shale oil in China: A case study of Biyang Depression [Фрактальные характеристики континентальных сланцевых пор и их значение для залегания сланцевой нефти в Китае: пример Биянской депрессии]. Fractals, 2018, vol. 26, no. 02, article ID 1840008, 11 p.
    13. Garkin A. I., Daniel A., Korolev E. V. The choice of a kinetic model of degradation of composite materials. Process parameters [Выбор кинетической модели деградации композиционных материалов. Параметры технологического процесса]. Journal Review of Industrial and Applied Mathematics, 2008, vol. 15, no. 3, pp. 459-460.
    14. Bachrach G. S. To estimate the thickness of the adsorption-solvate layer of bitumen on the surface of the particles. Kolloidnyy zhurnal, 1969, vol. 39, no. 1, pp. 8-12. (In Russian).
    15. Inozemtsev S. S., Pozdnyakov M. K., Korolev E. V. Investigation of the adsorption-solvate layer of bitumen on the surface of mineral powder. Vestnik MGSU, 2012, no. 11, pp. 159-167. (In Russian).
    16. Shekhovtsova S. Yu., Korolev E. V., Inozemtcev S. S. et al. Method of forecasting the strength and thermal sensitive asphalt concrete [Метод прогнозирования прочности и термочувствительности асфальтобетона]. Magazine of Civil Engineering, 2019, vol. 89, iss. 5, pp. 129-140.
    17. Vysotskaya M. A., Shekhovtsova S. Yu. The application of nanostructured modifier additives based on zeolitebearing tuffs in asphalt [Применение наноструктурированных модифицирующих добавок на основе цеолитсодержащих туфов в асфальтобетоне]. Materials Science Forum, 2020, no. 974 MSF, pp. 471-476.
    18. Gezentsvey L. B. Asfal'tovyy beton iz aktivirovannykh mineral'nykh materialov [Asphalt concrete made of activated mineral materials]. Moscow, Stroyizdat Publ., 1971. 255 p. (In Russian).
    19. Ivanova V. S., Bapankin V. S., Bunin I. Zh., Oksogoev A. A. Sinergetika i fraktaly v materialovedenii [Synergetics and fractals in materials science]. Moscow, Nauka Publ., 1994. 384 p. (In Russian).
    20. Pan Y., Li J., Yang T. et al. Optimization of gradation design of recycled asphalt mixtures based on fractal and Mohr-Coulomb theories [Оптимизация градационного проектирования переработанных асфальтобетонных смесей на основе фрактальной и мор-кулоновской теорий]. Construction and Building Materials, 2020, vol. 248, no. 11864.
  • For citation: Shekhovtsova S. Yu., Korolev E. V. Research of the Fractal Structure of the Interfacial Layer of Bitumen on the Surface of Mineral Powder. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2020, no. 12, pp. 86-92. (In Russian). DOI: 10.33622/0869-7019.2020.12.86-92.


BACK