Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • WATER SUPPLY, SEWERAGE, BUILDING SYSTEMS OF WATER RESOURCES PROTECTION
  • Calculation Justification Of Energy Dissipators For Spillways Of Hydraulic Structures
  • UDC 532.517.2 DOI: 10.33622/0869-7019.2020.09.65-72
    Genrikh V. OREKHOV, e-mail: orehov_genrih@mail.ru
    Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    Abstract. Methods of dissipating the kinetic energy of spilled flows and their effect on the design of the spillway systems of hydraulic structures are analyzed. It is indicated that there are different kinds of such systems whose designs depend on the type of waterworks, topographic and geological characteristics, as well as on the layout and composition of structures. The purpose of the study is to formulate an approach to determining the main hydraulic parameters and assign the geometric characteristics of hydraulic spillway systems whose operation is based on the use of interacting oppositely swirled (counter-vortex) flows is outlined. Hydraulic parameters were found using flow modeling. The scheme of the model installation is presented and its main geometric and hydraulic characteristics are given: the flow rate and operating head. Schematically shown is the design of a cylindrical local swirler for forming the initial swirling flows. The results of model studies are analyzed: the flow rate depending on the head and Reynolds number, the coefficients of flow energy dissipation and hydraulic resistance depending on the value of vacuum in the axial area of the flow. A simplified algorithm for the hydraulic calculation of the counter-vortex flow kinetic energy dissipator is proposed. It is found that the interacting flows almost completely suppress each other's swirl. This process is very intensive, since the mixing chamber with a length of only six its diameters turned out to be quite sufficient for its completion. It is emphasized that the intensity of energy dissipation is associated with the amount of vacuum in the axial flow zone and the intensity of air supply to the interaction zone of the swirled layers.
    Key words: hydraulic engineering, spillway systems, methods of flow kinetic energy dissipation, swirled flows, hydraulic characteristics, modeling of hydraulic phenomena, fluid flow rate, head.
  • REFERENCES
    1. Huang G.-B., Hu H., Du L. Shock waves and water wing in slit-type energy dissipaters [Ударные волны в рассекателях энергии в форме крыла]. J. of Hydrodynamics, 2017, vol. 29(3), pp. 504-509.
    2. Chen H.-y., Xu W.-l, Deng J. et al. Theoretical and experimental studies of hydraulic characteristics of discharge tunnel with vortex drop [Теоретические и экспериментальные исследования гидравлических характеристик переходного канала с вихревой структурой течения]. J. of Hydrodynamics, 2010, vol. 22(4), pp. 582-589.
    3. Gur'ev A. P., Khanov N. V., Volgin N. A. The influence of design factors of the stilling basin on the energy dissipation of the flow. Prirodoobustroystvo, 2015, no. 4, pp. 48-51. (In Russian).
    4. Sudol'skiy G. A. Hydraulic studies and to substantiate the design of the step spillway of the Boguchanskaya HPP. Gidrotekhnicheskoe stroitel'stvo, 2016, no. 8, pp. 32-40. (In Russian).
    5. Wu J.-h., Yao L., Ma F., Wu W.-w. Hydraulics of a multiple slit-type energy dissipater [Гидравлика многощелевого рассеивателя энергии]. J. of Hydrodynamics, 2014, vol. 26(1), pp. 86-93.
    6. Ma F., Xu Z., Wu J.-h. Flow choking over weir flow slit-type flip buckets [Ограничение потока через водосливные перекидные ковши щелевого типа]. J. of Hydrodynamics, 2015, vol. 27(6), pp. 907-912.
    7. Fen Khan, Kozlov D. V., Rumyantsev I. S. Hydraulic studies of stepped spillways of various designs. Gidrotekhnicheskoe stroitel'stvo, 2015, no. 8, pp. 29-36. (In Russian).
    8. Bayon A., Toro J. P., Bombardelli F. A. et al. Influence of VOF technique, turbulence model and discretization scheme on the numerical simulation of the non-aerated, skimming flow in stepped spillways [Модели турбулентности с использованием VOF и схемы дискретизации на численное моделирование неаэрируемого потока в ступенчатых водосбросах]. J. of Hydroenvironment Research, 2017, vol. 19, pp. 137-149. DOI: 10.1016/j.jher.2017.10.002.
    9. Messa G. V., Blanco R., Malavasi S. Preliminary development of a method for impact erosion prediction in pumps running as turbines [Предварительная разработка метода прогноза ударной эрозии насосов, работающих как турбины]. J. of Hydrology and Hydromehanics, 2018, vol. 66, pp. 121-128.
    10. Zamankhan P. Simulation of cavitation water flows [Моделирование кавитационных течений воды]. Matematical Problems in Engineering, 2015, vol. 2015, p. 872573.
    11. Sliva I. V., Lapin G. G. The accident at the outlet structure of the dam Oroville. Gidrotekhnicheskoe stroitel'stvo, 2017, no. 11, pp. 44-51. (In Russian).
    12. Lemperiere F. Dams and floods [Плотины и наводнения]. Engineering, 2017, vol. 3, pp. 144-149.
    13. Dehdar-Behbahani S., Parsaie A. Numerical modeling of flow pattern in dam spillway's guide wall. Case study: Balaroud dam, Iran [Численное моделирование режима течения в направляющей стенке водосброса плотины. Пример: плотина Баларуд, Иран]. Alexandria Engineer. J., 2016, vol. 55, pp. 467-473.
    14. Zuykov A. L. Gidrodinamika tsirkulyatsionnykh techeniy [Hydrodynamics of circulation flows]. Moscow, ASV Publ., 2010. 216 p. (In Russian).
    15. Zuykov A. L., Orekhov G. V., Churin P. S. Idling flow through the turbine block of a medium-or high-pressure HPP. Gidrotekhnicheskoe stroitel'stvo, 2013, no. 4, pp. 51-56; no. 5, pp. 32-40. (In Russian).
    16. Volshanik V. V., Zuykov A. L., Mordasov A. P. Zakruchennye potoki v gidrotekhnike [Swirling flows in hydraulic engineering]. Moscow, Energoatomizdat Publ., 1990. 280 p. (In Russian).
    17. Shchukin V. K., Khalatov A. A. Teploobmen, massoobmen i gidrodinamika zakruchennykh potokov v osesimmetrichnykh kanalakh [Heat transfer, mass transfer and hydrodynamics of swirling flows in axisymmetric channels]. Moscow, Mashinostroenie Publ., 1982. 200 p. (In Russian).
    18. Orekhov G. V. Water bodies in urban areas and engineering systems for aeration and closed water circulation. Ekologiya urbanizirovannykh territoriy, 2008, no. 2, pp. 88-93. (In Russian).
    19. Zuykov A. L., Orekhov G. V., Volshanik V. V. Distribution of azimuthal velocities in a laminar counter vortex flow. Vestnik MGSU, 2013, no. 5, pp. 150-161. (In Russian).
    20. Karelin V. J., Mordasov A. M., Zuikov A. L., Volshanik V. V. Numerical methods of studying experimental characteristics of fluid swirling flow structure [Численные методы экспериментального исследования характеристик закрученного потока]. Proceedings of the Symposium MIGA, Belgrade, Yugoslavia, 1990, pp. 11-14.
  • For citation: Orekhov G. V. Calculation Justification of Energy Dissipators for Spillways of Hydraulic Structures. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2020, no. 9, pp. 65-72. (In Russian). DOI: 10.33622/0869-7019.2020.09.65-72.


BACK