Published since 1923
DOI: 10.33622/0869-7019 Russian Science Citation Index (RSCI) íŕ ďëŕňôîđěĺ Web of Science
• STRUCTURAL MECHANICS
• Discrete-Continual Method On The Basis Of B-Splines For Solving The Problem Of Plate Bending
• UDC 624.04 DOI: 10.33622/0869-7019.2020.09.04-12
Pavel A. AKIMOV, e-mail: AkimovPA@mgsu.ru
Marina L. MOZGALEVA, e-mail: marina.mozgaleva@gmail.com
Taymuraz B. KAYTUKOV, e-mail: KaytukovTB@mgsu.ru
Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
Abstract. The well-known problem of bending a thin isotropic plate under static load is considered. To solve this problem, one of the possible wavelet-implementations of the discrete-continuum finite element method based on the use of B-splines is used. It should be mentioned, in particular, that the target of research is plates with constant physical and geometrical parameters along one direction (so-called "basic direction"). The article presents a continuous formulation of the corresponding problem with the main direction highlighted - we have a differential equation with operator coefficients with corresponding boundary conditions. Further, some issues related to the construction of normalized basis functions of a B-spline are considered, a discrete-continual formulation of the problem is presented (formed with the use of the technique of finite element approximation). Resultant system of ordinary differential equations with constant coefficients is given. The final part of the article describes an example of the numerical implementation of the proposed approach, as well as an example of analysis (numerical example).
Key words: discrete-continual finite element method, wavelet-based version, B-spline, thin isotropic plate, verification.
• REFERENCES
1. Christy D. L., Madhavan Pillai T. M., Nagarajan P. Thin plate element for applied element method. Structures, 2019, vol. 22, pp. 1-12.
2. Wang W., Lu Y., Zhao D., Zhang J., Bai X. Research on large deflection deformation reconstruction of elastic thin plate based on strain monitoring. Measurements, 2020, vol. 149, 107000.
3. Yue F., Wu Z., Yang H., Li M. Iterative technique for circular thin plates on Gibson elastic foundation using modified Vlasov model. Theoretical and Applied Mechanics Letters, 2019, vol. 9, iss. 5, pp. 312-319.
4. Zhang K., Ullah S., Zhong Y. New analytical free vibration solutions of orthotropic rectangular thin plates using generalized integral transformation. Journal of Computational and Applied Mathematics, 2020, vol. 367, 112439.
5. Nikitenko O. V. On the issue of calculating plates and shells with irregularities. Molodoj uchenyj, 2020, no. 4(294), pp. 55-61. (In Russian).
6. Petrov V. V. Teoriya rascheta plastin i obolochek [Theory of calculation of plates and shells]. Moscow, ASV Publ., 2018. 410 p. (In Russian).
7. Vajnberg D. V., Vajnberg E. D. Raschet plastin [Calculation of plates]. Kiev, Budivel'nik Publ., 1969. 436 p. (In Russian).
8. Kolmogorov L. G., Mel'nikova T. E. Application of the Ritz-Timoshenko method for calculating round flexible plates. Prikladnaya matematika i voprosy upravleniy, 2016, no. 2, pp. 14-23. (In Russian).
9. Kadomceva E. E., Beskopyl'nyj A. N., Beskopyl'naya N. I., Berdnik Ya. A. Calculation of the stiffness of a corrugated plate on an elastic base using the Bubnov-Galerkin method. Nauchnoe obozrenie. Tekhnicheskie nauki, 2016, no. 6, pp. 33-35. (In Russian).
10. Sabirov R. A., Petuhova I. Ya. Variational-difference method of calculation of a plate under conditions of plane stress state in stress on the temperature of the load. Reshentnevskie chteniya, 2018, vol. 1, pp. 572-574. (In Russian).
11. Lahtin A. A. Raschet pryamougol'noj plastiny metodom konechnyh raznostej [Calculation of a rectangular plate using the finite difference method]. Ekaterinburg, UrGUPS Publ., 2013. 15 p. (In Russian).
12. Zav'yalov V. N., Martynov E. A., Romanovskij V. M. Osnovy stroitel'noj mekhaniki plastin [Fundamentals of structural mechanics of plates]. Omsk, SibADI Publ., 2012. 116 p. (In Russian).
13. Akimov P. A., Belostotskiy A. M., Mozgaleva M. L., Mojtaba Aslami, Negrozov O. A. Correct multilevel discrete-continual finite element method of structural analysis. Advanced Materials Research, 2014, vol. 1040, pp. 664-669. (In Russian).
14. Akimov P. A., Mozgaleva M. L. Wavelet-based multilevel discrete-continual finite element method for local plate analysis. Applied Mechanics and Materials, 2013, vol. 351-352, pp. 13-16.
15. Akimov P. A., Sidorov V. N. Correct method of analytical solution of multipoint boundary problems of structural analysis for systems of ordinary differential equations with piecewise constant coefficients. Advanced Materials Research, 2011, vol. 250-253, pp. 3652-3655.
16. Zolotov A. B., Akimov P. A., Mozgaleva M. L. Mnogourovnevye diskretnye i diskretno-kontinual'nye realizacii variacionno-raznostnogo metoda [Multilevel discrete and discrete-continuum implementations of the variational-difference method]. Moscow, ASV Publ., 2013. 416 p. (In Russian).
17. Dobeshi I. Desyat' lekcij po vejvletam [Ten lectures on wavelets]. Izhevsk, NIC Regulyarnaya i haoticheskaya dinamika Publ., 2001. 464 p. (In Russian).
18. Chui K. Vvedenie v vejvlety [Introduction to wavelets]. Moscow, Mir Publ., 2001. 412 p.
19. Vadlamani S., Arun C.O. A stochastic B-spline wavelet on the interval finite element method for beams. Computers & Structures, 2020, vol. 233, 106246.
• For citation: Akimov P. A., Mozgaleva M. L., Kaytukov T. B. Discrete-Continual Method on the Basis of B-Splines for Solving the Problem of Plate Bending. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2020, no. 9, pp. 4-12. (In Russian). DOI: 10.33622/0869-7019.2020.09.04-12.

BACK 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020