Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) íā īëāōôîđėå Web of Science
  • Alternative Heat Supply For Northern Settlements Of Urban Type
  • UDC 697.7:621.311 DOI: 10.33622/0869-7019.2020.08.65-73
    Victor T. FEDOROV, e-mail:
    Concern "Nanoindustry", ul. Bardina, 4, korp. 1, Moscow 119334, Russian Federation
    Muhamed N. KOKOEV, e-mail:
    Kabardino-Balkar State University named after H. M. Berbekov, ul. Chernyshevskogo, 173, Kabardino-Balkarian Republic, Nalchik 360004, Russian Federation
    Abstract. The article is devoted to alternative methods of heat supply to consumers using wind power plants. the characteristic of regions with extreme climatic conditions where they can be used is presented. A comparison of wind power installations with horizontal and vertical axes of rotation is given, their weak and strong sides are highlighted. A cogeneration wind-driven plant was developed for parallel operation with local boiler houses. This will increase the reliability of heat supply and reduce fuel consumption. Depending on the size of the village, the wind rose and terrain relief, there may be several cogeneration wind-driven plants per one village each. A mandatory requirement for this plant is its modular structure making it possible to transport modules on ordinary vehicles. The cost of a unit of heat generated by the cogeneration wind-driven plant for heating and hot water supply can be significantly reduced. To achieve this, it is necessary to use a wind turbine with a vertical axis of rotation, simplify its design, use mass produced parts and components taken from other industries, and refuse to generate the necessarily conditioned electricity. Another option is to abandon even a simple electric generator, using direct conversion of mechanical energy into heat. For effective thermal insulation of the heating pipeline between the installation and the boiler room, it is possible to use evacuated powder insulation. For the purpose of technical and economic evaluation of proposals, it is desirable to conduct additional research work.
    Key words: alternative heat supply, Northern urban-type settlement, cogeneration wind-driven plant, wind turbine with vertical axis of rotation, vacuum-powder thermal insulation.
    1. Karta vetrov Rossii - 2017 [Map of the Winds of Russia - 2017]. Available at: (accessed 22.10.2019). (In Russian).
    2. Neddermann B. WindÅnergie-2000. Osnabrueck, Germany. Hrsg.: Bundesverband WindEnergie e.V., 182 S.
    3. Hau E. Windkraftanlagen. Berlin, Heidelberg, Springer-Verlag, 2008. 910 S. DOI 10.1007/978-3-540-72151-2 .
    4. "Chistaya" energiya Kitaya - 2017 [China's clean energy - 2017]. Available at: (accessend 22.10.2019). (In Russian).
    5. Li H., Richards Ch., Watson J. High-Performance glass fiber development for composite applications. International Journal of Applied Glass Science, 2014, no. 5(1), pp. 65-81. DOI:10.1111/ijag.12053.
    6. Joule J. P. On the mechanical equivalent of heat and on the constitution of the elastic fluids. Reports of British Association, 1848, pp. 63-82.
    7. Tvaydell Dzh., Ueyr A. Vozobnovlyayemyye istochniki energii [Renewable energy sources]. Moscow, Energoatomizdat Publ., 1990. 393 p. (In Russian).
    8. Upavshaya v Tiksi vetroustanovka vosstanovleniyu ne podlezhit. Press-sluzhba PAO "Yakutskenergo" [A wind turbine that has fallen in Tiksi cannot be repaired]. Available at: (accessed 22.10.2019). (In Russian).
    9. Buchner A-J., Soria J., Honnery D., Smits A. J. Dynamic stall in vertical axis wind turbines: Scaling and topological considerations. Journal of Fluid Mechanics, 2018, no. 841, pp. 746-66. DOI:10.1017/jfm.2018.112.
    10. Kokoev M. N. Heat-generating wind power installation. Energiya: ekonomika, tekhnika, ekologiya, 2007, no. 3, pp. 18-22. (In Russian).
    11. Patent RF 2454564. Vetrosilovaya ustanovka s rotorom Dar'ye [Wind power installation with Darya rotor]. Fedorov V. T., Bevov R. K. 2010. Bull. 18. 10 p. (In Russian).
    12. Fedorov V. T., Kokoev M. N. Heating of industrial greenhouses using vertical-axis wind turbines. Vestnik otdeleniya stroitel'nykh nauk RAASN, 2014, vol. 18, pp. 169 - 172. (In Russian).
    13. Kokoev M. N., Fedorov V. T., Khadzhishalapov G. N. Wind energy in the production of foamglass and expanded clay. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta, 2019, no. 46(1), pp. 187-194. (In Russian).
    14. Vetry v Respublike Dagestan - 2017 [Winds in the Republic of Dagestan - 2017]. Available at: (accessed 22.10.2019). (In Russian).
    15. Sagidov Yu. N. Industry of building materials and structures of the Republic of Dagestan: state and prospects. Regional'nyye problemy preobrazovaniya ekonomiki, 2014, no. 7, pp. 110-114. (In Russian).
    16. Uvarov P. P., Gorin V. M., Tokareva S. A., Kabanova M. K. High grade expanded clay and expanded clay concrete for building in Yakutia. Nauka i tekhnika v Yakutii, 2006, no. 2 (11), pp. 19-23. (In Russian).
    17. Pyatin Yu. M. Proektirovanie elementov izmeritel'nyh priborov [Designing elements of measuring instruments]. Moscow, Vysshaya shkola Publ., 1977. 304 p. (In Russian).
    18. Lavrova A. T. Elementy avtomaticheskih pribornyh ustrojstv [Designing elements of measuring instruments]. Moscow, Mashinostroenie Publ., 1975. 456 p. (In Russian).
    19. Zaghib K., Dubé J., Dallaire A., Galoustov K., et al. Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries. Journal of Power Sources, 2012, vol. 219, pp. 36-44.
    20. Patent RF 2144595. Vakuumnoe teploizolyacionnoe izdelie [Vacuum thermal insulation product]. Kokoev M. N., Fedorov V. T. 1997. Publ. 20.01.2000. (In Russian).
    21. Kokoev M. N., Fedorov V. T. Thermal insulation product with extremely low material consumption. Stroitel'nye materialy, 1998, no. 9, pp. 10-12. (In Russian).
    22. Fedorov V. T., Kokoev M. N. Energosberegayushchaya vakuumno-poroshkovaya panel' dlya oblitsovki zdaniy. Vestnik Otdeleniya stroitel'nykh nauk RAASN, 2010, vol. 2, pp. 219-226. (In Russian).
    23. Caps R., Fricke J. Konzepte für den Einsatz, von evakuirten Dämmungen bei Passivhäusern. 4 Passivhaus Tagung, Kassel, Marz 2000. S.171-177.
    24. Caps R., Friscke J., Vakuumdämmungen in der Anvendung. 5 Passivhaus Tagung, Reutlingen, Februar 2001. S. 247-254.
    25. Arharov A. M., Belyakov V. P., Mikulin E. I., et al. Kriogennye sistemy [Cryogenic systems]. Moscow, Mashinostroenie Publ., 1987. 536 p. (In Russian).
  • For citation: Fedorov V. T., Kokoev M. N. Alternative Heat Supply for Northern Settlements of Urban Type. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2020, no. 8, pp. 65-73. (In Russian). DOI: 10.33622/0869-7019.2020.08.65-73.