Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • Stability Of Steel Centrally Compressed Screws In Solid Wood
  • UDC 624.04:624.011.1 DOI: 10.33622/0869-7019.2020.07.04-09
    Anatoli Y. NAICHUK, e-mail:
    Konstantin K. HLUSHKO, e-mail:
    Ekaterina V. MARKECHKO, e-mail:
    Brest State Technical University, ul. Moskovskaya, 267, Brest 224017, Republic of Belarus
    Abstract. Determining the values of critical forces that cause loss of stability of compressed screws in wooden structures is a necessary requirement when checking the bearing capacity of such screws. For this reason, it is necessary to develop a scientifically based design model for determining coefficients of design lengths of compressed screws with different distribution of longitudinal force and change in bending stiffness along the length. The article considers existing approaches to solving the investigated issue. The solution of the problem of stability of centrally compressed screws in the wood mass as rods connected to the elastic base is given. Cases of loss of stability of uniformly and non-uniformly compressed screws along the length, single step change in their bending rigidity, as well as various methods of support of the outer end - hinged-movable fixation in perpendicular direction to the longitudinal axis and sliding sealing are considered. The results obtained in the form of graphs of changes in the coefficients of the calculated lengths of compressed rods in the wood mass are recommended to be used to assess their stability under central compression, taking the internal diameter of the thread to determine the moment of inertia of the cross section.
    Key words: wooden structures, screw, compression, elastic base, stability, critical force, effective length, rigidity.
    1. EN 1995-1-1(2004). Eurocode 5. Design of timber structures. Part 1-1: General - Common rules and rules for buildings [Еврокод 5. Проектирование деревянных конструкций. Часть 1-1 - общая. Общие правила и правила для зданий]. Available at: (accessed 27.02.2020).
    2. Bejtka I., Blass H. J. Self-tapping screws as reinforcement in beam supports [Винты в качестве усиления опорных частей балок]. Karlsruhe, 2011. 25 p.
    3. Formolo S., Granstrцm R. Compression perpendicular to the grain and reinforcement of a pre-stressed timber deck [Сжатие перпендикулярно волокнам и усиление деревянных покрытий]. Department of civil and environmental engineering division of structural engineering steel and timber structures, Chalmers University of Technology. Gцteborg, 2007. 158 p.
    4. Nilsson K. Skruvarmering som fцrstдrkning i trд vid belastning vinkelrдtt fiberriktningen : en fцrsцksstudie, Examensarbete [Использование винтов для усиления нагруженных деревянных конструкций перпендикулярно направлению волокон: экспериментальное исследование]. Lund, 2002. Rapport TVBK- 5112. 35 p.
    5. Reichegger M. Compressione ortogonale alle fibre negli elementi strutturali lignei secondo le nuove proposte di normative. Analisi e sperimentazione su differenti sistemi di rinforzo: tesi di laurea [Сжатие поперек волокон элементов деревянных конструкций согласно новым положениям норм. Расчеты и эксперименты при различных системах усиления]. l_Universitб degli Studi di Trento. Trento, 2004. 57 p.
    6. ETA-11/0024. European Technical Approval. E.u.r.o. Tec screws type "KonstruX", "Paneltwistec", "Topduo", "Terrassotec", "SP FK", "Speedo", "Hobotec", "Hapatec", "SP ZK", "Ecotec", "WBS", "FBAS", "VSS" and "Brutus" [Европейский технический сертификат. E.u.r.o. Типы винтов "KonstruX", "Paneltwistec", "Topduo", "Terrassotec", "SP FK", "Speedo", "Hobotec", "Hapatec", "SP ZK", "Ecotec", "WBS", "FBAS", "VSS" и "Brutus"]. Available at: (accessed 27.02.2020).
    7. ETA-11/0030. European Technical Approval. Rotho Blaas Self-tapping screws [Европейский технический сертификат. Винты Rotho Blaas]. Available at: (accessed 27.02.2020).
    8. ETA-11/0190. European Technical Assessment. Wьrth Self-tapping screws [Европейская техническая оценка. Винты Wьrth]. Available at: (accessed 27.02.2020).
    9. Engesser F. Die Sicherung offener Brьcken gegen Ausknicken [Закрепление открытых мостов от потери устойчивости]. Zentralblatt der Bauverwaltung, 1884, No. 40, S. 415-417.
    10. Piazza M., Tomasi R., Modena R. Strutture in legno - materiale, calcolo e progetto secondo le nuove normative Europee [Материалы, расчет и проектирование в соответствии с новыми европейскими нормами]. Milano, Hoepli Publ., 2005. 723 p.
    11. Bleich F. Stability of metal structures. Moscow, Fizmatgiz Publ., 1959. 544 p.
    12. Goncharov V. L. Interpolation processes and entire functions. Advances in mathematical sciences, 1937, no. 3, pp. 113-143. (In Russian).
    13. Lazarov R. D., Makarov V. L., Samarsky A. A. On the construction and study of homogeneous difference schemes. Mathematical collection, 1982, vol. 117(159), no. 4, pp. 469-480. (In Russian).
    14. Bygg : Handbok fцr hus-, vдg- och vattenbyggnad. Allmдnna grunder [Справочник по проектированию зданий, транспорных и гидротехнических сооружений. Общие положения]. Stockholm, AB Byggmдstarens fцrlag,1971. Huvuddel 1A. 1032 s.
    15. Leites S. D. Stability of compressed steel rods. Moscow, Gosstroyizdat Publ., 1954. 312 p. (In Russian).
  • For citation: Naichuk A. Y., Hlushko K. K., Markechko E. V. Stability of Steel Centrally Compressed Screws in Solid Wood. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2020, no. 7, pp. 4-9. (In Russian). DOI: 10.33622/0869-7019.2020.07.04-09.