Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • WATER SUPPLY, SEWERAGE, BUILDING SYSTEMS OF WATER RESOURCES PROTECTION
  • Inverse Problem For A Linear Filtration Function
  • UDC 624.131 DOI: 10.33622/0869-7019.2020.06.64-68
    Ludmila I. KUZMINA, e-mail: lkuzmina@hse.ru
    Higher School of Economics, Myasnitskaya ul., 20, Moscow 101000, Russian Federation
    Yuri V. OSIPOV, e-mail: yuri-osipov@mail.ru
    Viktorya I. TZARIOVA, e-mail: tzariova.vika@yandex.ru
    Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    Abstract. The article is devoted to an important task of underground hydro-mechanics-filtration of suspension in a porous medium. One-dimensional long-term deep filtration of a monodisperse suspension in a homogeneous porous medium is considered. For a one-dimensional macroscopic model with a linear filtration function, an asymptotic solution is constructed near the concentration front of suspended and retained particles. On the basis of explicit asymptotic formulas, the inverse filtration problem is studied : finding the filtration function for a given concentration of suspended particles at the outlet of a porous medium. It is revealed that the least squares method is an effective way to determine the model parameters. It is shown that the calculated parameters are close to the coefficients of the model, and the asymptotics well approximates the numerical solution. The proposed numerical - asymptotic method makes it possible to calculate the linear filtration function using laboratory experiments and adjust the model to specific field conditions. It is concluded that the next stage in solving the inverse filtration problem is to determine unknown parameters of a nonlinear filtration function that depends on three or more constants. To do this, it is needed to modify the methods presented in this paper.
    Key words: deep bed filtration, porous medium, suspended and retained particles, linear filtration function, asymptotics, inverse problem.
  • REFERENCES
    1. Strшmsvik H. The significance of hydraulic jacking for grout consumption during high pressure pre-grouting in Norwegian tunnelling. [Значение гидравлического давления для расхода раствора при предварительной цементации под высоким давлением в норвежском туннелировании]. Tunnelling and Underground Space Technology, 2019, vol. 90, pp. 357-368.
    2. Civan F. Reservoir formation damage [Повреждение подземного пласта]. Burlington, MA, USA, Gulf Professional Publishing, 2015. 1042 p.
    3. Mays D. C., Hunt J. R. Hydrodynamic and chemical factors in clogging by montmorillonite in porous media [Гидродинамические и химические факторы при засорении монтмориллонитом в пористых средах]. Environmental Science and Technology, 2007, vol. 41, pp. 5666-5671.
    4. Santos A., Bedrikovetsky P., Fontoura S. Analytical micro model for size exclusion: Pore blocking and permeability reduction [Аналитическая микромодель размерного механизма: блокировка пор и снижение проницаемости]. Journal of Membrane Science, 2008, vol. 308, pp 115-127.
    5. Herzig J. P., Leclerc D.M., Legoff P. Flow of suspensions through porous media - application to deep filtration [Поток суспензий через пористые среды - применение для глубинной фильтрации]. Industrial and Engineering Chemistry Research, 1970, vol. 62(5), pp. 8-35.
    6. Kuz'mina L. I., Osipov Yu. V. Asymptotic solution of the problem of suspension filtration in a porous medium with a small sediment. Voprosy prikladnoj matematiki i vychislitel'noj mekhaniki [Questions of applied mathematics and computational mechanics]. Moscow, ASV Publ., 2015, pp. 270-275. (In Russian).
    7. Osipov Yu. V., Zotkin S. P. Calculation of heterogeneous particles filtration in a porous medium. Promyshlennoe i grazhdanskoe stroitel'stvo, 2017, no. 11, pp. 117-120. (In Russian).
    8. Santos A., Araujo J. A. Modeling deep bed filtration considering limited particle retention [Моделирование глубинной фильтрации с учетом ограниченного удержания частиц]. Transport in Porous Media, 2015, vol. 108(3), pp. 697-712.
    9. Galaguz Yu. P., Kuz'mina L. I., Osipov Yu. V. The problem of filtration of suspensions in a porous medium with sediment. Izvestiya RAN. Mekhanika zhidkosti i gaza, 2019, no. 1, pp. 86-98. (In Russian).
    10. Alvarez A. C., Bedrikovetsky P.G., Hime G., Marchesin A. O., Marchesin D., Rodrigues J. R. A fast inverse solver for the filtration function for flow of water with particles in porous media [Обратная задача для функции фильтрации потока воды с частицами в пористой среде]. Inverse Problems, 2006, vol. 22, pp. 69-88.
    11. Alvarez A. C., Hime G., Marchesin D., Bedrikovetsky P. G. The inverse problem of determining the filtration function and permeability reduction in flow of water with particles in porous media [Обратная задача определения функции фильтрации и снижения проницаемости в потоке воды с частицами в пористых средах]. Transport in Porous Media, 2007, vol. 70(1), pp. 43-62.
    12. Alvarez A. C., Hime G., Silva J. D., Marchesin D. Analytic regularization of an inverse filtration problem in porous media [Аналитическая регуляризация обратной задачи фильтрации в пористых средах]. Inverse Problems, 2013, vol. 29, pp. 025006.
    13. Vyazmina E. A., Bedrikovetskii P. G., Polyanin A. D. New classes of exact solutions to nonlinear sets of equations in the theory of filtration and convective mass transfer [Новые классы точных решений нелинейных систем уравнений в теории фильтрации и конвективного массопереноса]. Theoretical Foundations of Chemical Engineering, 2007, vol. 41(5), pp. 556-564.
    14. Malgaresi G., Collins B., Alvaro P., Bedrikovetsky P. Explaining non-monotonic retention profiles during flow of size-distributed colloids [Немонотонные профили осадка для потока распределенных по размеру коллоидов]. Chemical Engineering Journal, 2019, vol. 375, pp. 121984.
    15. Osipov Yu., Kotov N. Asymptotic model of size-exclusion grouting [Асимптотическая модель размерного механизма цементации]. IOP Conference Series: Materials Science and Engineering, 2018, vol. 365, 042006. DOI: 10.1088/1757-899X/365/4/042006.
    16. Oliveira P., Vaz A., Siqueira F., Yang Y., You Z. Slow migration of mobilised fines during flow in reservoir rocks: Laboratory study [Медленная миграция мобилизованных мелких частиц при течении в пластовых породах: лабораторные исследования]. Journal of Petroleum Science and Engineering, 2014, vol. 122, pp. 534-541.
    17. Aji K., You Z., Badalyan A. Transport and straining of suspensions in porous media: experimental and theoretical study [Транспортировка и задержание суспензий в пористых средах: экспериментальное и теоретическое исследование]. Thermal Science, 2012, vol. 16(5), pp. 1344-1348.
    18. Careva V. I. Solving the filtration problem in a porous medium. Potapovskie chteniya-2019: sbornik materialov ezhegodnoj Vserossijskoj nauchno-prakticheskoj konferencii, posvyashchennoj pamyati A. D. Potapova [Potapov readings-2019: collection of materials of the annual all-Russian scientific and practical conference dedicated to the memory of A. D. Potapov (Moscow, April 25, 2019]. Moscow, MGSU Publ., 2019, pp. 256-259. (In Russian).
    19. Galaguz Y. P., Safina G. L. Modeling of fine migration in a porous mediuz [Моделирование переноса малых частиц в пористой среде]. MATEC Web of Conferences, 2016, vol. 86, pp. 03003.
    20. Toro E. F. Riemann solvers and numerical methods for fluid dynamics [Решатели Римана и численные методы гидродинамики]. Dordrecht: Springer Verlag, 2009. 620 p.
    21. Badalyan A., You Z., Aji K., Bedrikovetsky P., Carageorgos T., Zeinijahromi A. Size exclusion deep bed filtration: Experimental and modelling uncertainties [Глубинная фильтрация с исключением по размеру: экспериментальные и модельные неопределенности]. Review of Scientific Instruments, 2014, vol. 85(1), pp. 015111.
  • For citation: Kuzmina L. I., Osipov Yu. V., Tzariova V. I. Inverse Problem for a Linear Filtration Function. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2020, no. 6, pp. 64-68. (In Russian). DOI: 10.33622/0869-7019.2020.06.64-68.


BACK