Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science


  • BUILDING MATERIALS AND PRODUCTS
  • Heat-Insulating Properties Of Effective Light Weight Concretes For Three-Layer Protecting Coverings Of Buildings
  • UDC 666.97 DOI: 10.33622/0869-7019.2020.05.36-44
    Vu Dinh THO (Vietnam), e-mail: vuthoks@gmail.com
    Tang Van LAM (Vietnam), e-mail: lamvantang@gmail.com
    Elena A. KOROL, e-mail: KorolEA@mgsu.ru
    Boris I. BULGAKOV, e-mail: BulgakovBI@mgsu.ru
    Olga V. ALEKSANDROVA, e-mail: AleksandrovaOV@mgsu.ru
    Oksana A. LARSEN, e-mail: LarsenOA@mgsu.ru
    Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    Abstract. Àt present, an intensive change in the structure and materials of building envelopes is taking place in order to increase the energy efficiency of buildings, as well as to improve their appearance and extending the period of maintenance-free operation. The paper presents the results of studies of the physical-mechanical properties of light polystyrene concrete and effective heat-insulation of three-layer structures based on heat-insulating light and structural heavy concrete. To obtain the concrete mixture, Portland cement, granular foam polystyrene, polycarboxylate super-plasticizer, quartz sand and limestone crushed stone were used. All raw materials were of local origin (Vietnam). The composition of the heavy and light concrete mixture was calculated using the absolute volume method according to the standard of Vietnam, the thermal conductivity of concrete was measured with an appropriate device. It has been established that using local surface components it is possible to obtain structural concrete, as well as polystyrene concrete, which has sufficient tensile and tensile strength during bending and heat conduction in the dry state. From the calculations made with the use of the computer program, it follows that the three-layer reinforced concrete coating slab, consisting of heavy and polystyrene concrete, has better thermal insulation properties compared to a coating of the same thickness of solid and perforated structural concrete, as well as with a panel with foam polystyrene blocks.
    Key words: structural heat insulating material, energy efficiency, enclosing structures, thermophysical properties, granular foam polystyrene, average density, thermal conductivity.
  • REFERENCES
    1. Babu K. G., Babu D. S. Behaviour of lightweight expanded polystyrene concrete containing silica fume [Ïîâåäåíèå ëåãêîãî ïåíîïîëèñòèðîëáåòîíà, ñîäåðæàùåãî ìèêðîêðåìíåçåì]. Cement and Concrete Research, 2003, no. 33(5), pp. 755-762. Available at: https://doi.org/10.1016/S0008-8846(02)01055-4 (accessed 28.03.2020).
    2. Babu D. S., Babu K. G., Wee T. H. Properties of lightweight expanded polystyrene aggregate concretes containing fly ash [Ñâîéñòâà ëåãêèõ ïåíîïîëèñòèðîëüíûõ çàïîëíèòåëåé, ñîäåðæàùèõ çîëó-óíîñà]. Cement and Concrete Research, 2005, no. 35, pp. 1218-1223. DOI:10.1016/j.cemconres.2004.11.015
    3. QCVN 02-2009. Vietnam building code natural physical & climatic data for construction [Âüåòíàìñêèé ñòðîèòåëüíûé êîäåêñ ôèçè÷åñêèõ ïðèðîäíûõ è êëèìàòè÷åñêèõ äàííûõ äëÿ ñòðîèòåëüñòâà]. Standard. Vietnam. 2009. 324 p.
    4. TCVN 4605-1988. Heating techniques - Insulating component - Designs standard [Ìåòîäû îáîãðåâà - Èçîëèðóþùèé êîìïîíåíò - Ñòàíäàðòû êîíñòðóêöèè]. Standard. Vietnam. 1988. 27 p.
    5. QCVN 09-2013. National technical regulation on energy efficiency building [Íàöèîíàëüíûé òåõíè÷åñêèé ðåãëàìåíò ïî ýíåðãîýôôåêòèâíîñòè ñòðîèòåëüñòâà]. Standard. Vietnam. 2013. 19 p.
    6. Elzafraney M., Soroushian P. Deru M. Development of energy-efficient concrete buildings using recycled plastic aggregates [Ðàçðàáîòêà ýíåðãîýôôåêòèâíûõ áåòîííûõ çäàíèé ñ èñïîëüçîâàíèåì ïåðåðàáîòàííûõ ïëàñòèêîâûõ çàïîëíèòåëåé]. Journal of Architectural Engineering, 2005, vol. 12, pp. 122-130.
    7. Lam N. S., Hanh P. D. Thermal insulation for buildings [Òåïëîèçîëÿöèÿ äëÿ çäàíèé]. Journal of Science and Technology in Civil Engineering, 2015, no. 4, pp. 36-41.
    8. Guo W., Qiao X., Huang Y., Fang M., Han X. Study on energy saving effect of heat-reflective insulation coating on envelopes in the hot summer and cold winter zone [Èññëåäîâàíèå ýíåðãîñáåðåãàþùåãî ýôôåêòà òåïëîîòðàæàþùåãî èçîëÿöèîííîãî ïîêðûòèÿ íà îãðàæäàþùèå êîíñòðóêöèè â æàðêîé ëåòíåé è õîëîäíîé çèìíåé çîíå]. Energy and Buildings, 2012, vol. 50, pp. 196-203. Available at: https://doi.org/10.1016/j.solener.2018.07.036. (accessed 28.03.2020).
    9. Korniyenko S. Complex analysis of energy efficiency in operated high-rise residential building: Case study [Êîìïëåêñíûé àíàëèç ýíåðãîýôôåêòèâíîñòè â ýêñïëóàòèðóåìîì ìíîãîýòàæíîì æèëîì äîìå: èçó÷åíèå ñëó÷àåâ]. E3S Web of Conferences, 2018, vol. 33, pp. 02005. Available at: https://doi.org/10.1051/e3sconf/20183302005 (accessed 28.03.2020).
    10. Leshchenko M. V., Semko V. Thermal characteristics of the external walling made of cold-formed steel studs and polystyrene concrete [Òåðìè÷åñêèå õàðàêòåðèñòèêè íàðóæíûõ ñòåí èç ñòàëüíûõ ñòîåê õîëîäíîé øòàìïîâêè è ïîëèñòèðîëáåòîíà]. Magazine of Civil Engineering, 2015, no. 8, pp. 43-55. DOI: 10.5862/MCE.60.6.
    11. Bilous I. Yu., Deshko V. I., Sukhodub I. O. Building inside air temperature parametric study [Ïàðàìåòðè÷åñêîå èññëåäîâàíèå òåìïåðàòóðû âîçäóõà âíóòðè ïîìåùåíèé]. Magazine of Civil Engineering, 2016, no. 8(68), pp. 65-75. DOI: 10.5862/MCE.68.7.
    12. Vu Kim Dien, Tang Van Lam, Bazhenov Yu. M., Bazhenova S. I., Bazhenova O. Yu. The effect of polystyrene foam and fly ash on the properties of polystyrene concrete. BST , 2019, no. 1. pp. 50-52. (In Russian).
    13. Ali Sadr Momtazi, Alebar Khodaparast Haggi, Hadi Rasmi Atigh. Durability of lightweight concrete containing EPS In salty exposure conditions [Äîëãîâå÷íîñòü ëåãêèõ áåòîíîâ, ñîäåðæàùèõ ïåíîïîëèñòèðîë, â óñëîâèÿõ âîçäåéñòâèÿ ñîëåíîé âîäû]. Second Intermational Conference on Sustainable Construction Material and Technologies, 2010, no. 6, pp. 28-30
    14. Herki B. A., Khatib J. M., Negim E. M. Lightweight concrete made from waste polystyrene and fly ash [Ëåãêèé áåòîí èç îòõîäîâ ïîëèñòèðîëà è çîëû-óíîñà]. World Applied Sciences Journal, 2013, no. 21 (9), pp. 1356-1360. DOI: 10.5829/idosi.wasj.2013.21.9.20213
    15. Kim Huy Hoang, Kim Kha, Truong Van Viet, Bui Duc Vinh, Nguyen Van Chanh. Survey optimal composition of lightweight concrete to create hollow beads EPS (expanded polystyrene) to produce the panel wall and panel floor used for the housing assembly [Èññëåäîâàíèå îïòèìàëüíîãî ñîñòàâà ëåãêîãî ïîëèñòèðîëáåòîíà äëÿ ïðîèçâîäñòâà ñáîðíûõ ñòåíîâûõ ïàíåëåé è ïàíåëåé ïîëà]. Sience & Technology Development, 2010, vol. 13 (3), pp. 14-28.
    16. Suvorov D. I. Polystyrene concrete in load-bearing structures and its thermal properties. Molodezhnyy nauchnyy vestnik, 2018, no. 1, pp. 6-12. (In Russian).
    17. Tang Van Lam, Vu Dinh Tho, Vu Kim Dien, Bulgakov Boris Igorevich, Elena Anatolyevna Korol. Properties and thermal insulation performance of light-weight concrete [Ñâîéñòâà è òåïëîèçîëÿöèîííûå õàðàêòåðèñòèêè ëåãêîãî áåòîíà]. Magazine of Civil Engineering, 2019, no. 8(84), pp. 173-191. Available at: https://doi.org/10.18720/MCE.84.17
    18. Nguyen Duy Hieu, Kim Xuan T. Truong, Ngoc Minh Nguyen, Do Trong Toan. Self-compacting lightweight aggregate concrete in Vietnam [Ñàìîóïëîòíÿþùèéñÿ áåòîí íà ëåãêèõ çàïîëíèòåëÿõ âî Âüåòíàìå]. IOP Conference Series: Materials Science and Engineering, 2018, vol. 365, pp. 032030. DOI:10.1088/1757-899X/365/3/032030
    19. Babu K.G., Babu D.S. Performance of fly ash concretes containing lightweight EPS aggregates [Õàðàêòåðèñòèêè ëåãêèõ áåòîíîâ, ñîäåðæàùèõ çîëó-óíîñà è ëåãêèå ïåíîïîëèñòèðîëüíûå çàïîëíèòåëè]. Cement and Concrete Composites, 2004, vol 26, pp. 605-611. Available at: https://doi.org/10.1016/S0958-9465(03)00034-9 (accessed 28.03.2020).
    20. Tang Van Lam, Vu Kim Dien, Ngo Xuan Hung, Vu Dinh Tho, Bulgakov B. I., Bazhenova S. I. Effect of aluminium powder on light-weight aerated concrete properties [Âëèÿíèå àëþìèíèåâîãî ïîðîøêà íà ñâîéñòâà ëåãêîãî ãàçîáåòîíà]. E3S Web of Conferences, 2019, vol. 97, pp. 02005. Available at: https://doi.org/10.1051/e3sconf/20199702005 (accessed 28.03.2020).
    21. Fathi M., Yousefipour A., Hematpoury Farokhy E. Mechanical and physical properties of expanded polystyrene structural concretes containing micro-silica and nano-silica [Ìåõàíè÷åñêèå è ôèçè÷åñêèå ñâîéñòâà ïåíîïîëèñòèðîëüíûõ êîíñòðóêöèîííûõ áåòîíîâ, ñîäåðæàùèõ ìèêðîêðåìíåçåì è íàíîêðåìíåçåì]. Construction and Building Materials, 2017, vol. 136, pp. 590-597. Available at: https://doi.org/10.1016/j.conbuildmat.2017.01.040 (accessed 28.03.2020).
    22. Liu N., Chen B. Experimental study of the influence of EPS particle size on the mechanical properties of EPS lightweight concrete [Ýêñïåðèìåíòàëüíîå èññëåäîâàíèå âëèÿíèÿ ðàçìåðà ÷àñòèö ïåíîïîëèñòèðîëà íà ìåõàíè÷åñêèå ñâîéñòâà ëåãêîãî ïîëèñòèðîëáåòîíà]. Construction and Building Materials, 2014, vol 68, pp. 227-232. Available at: https://doi.org/10.1016/j.conbuildmat.2014.06.062. (accessed 28.03.2020).
    23. Tang Van Lam, Vu Dinh Tho, Vu Kim Dien, Bulgakov B. I., Aleksandrova O. V., Bazhenova S. I. Combined effects of bottom ash and expanded polystyrene on light-weight concrete properties [Êîìáèíèðîâàííîå âëèÿíèå çîëüíûõ îñòàòêîâ è âñïåíåííîãî ïîëèñòèðîëà íà ñâîéñòâà ëåãêèõ áåòîíîâ]. MATEC Web of Conferences, 2018, vol. 251, pp. 01007. Available at: https://doi.org/10.1051/matecconf/201825101007 (accessed 28.03.2020).
    24. Hoang Minh Duc, Le Phuong Ly. Effect of matrix particle size on EPS lightweight concrete properties [Âëèÿíèå ðàçìåðà ÷àñòèö ìàòðèöû íà ñâîéñòâà ëåãêîãî ïîëèñòèðîëáåòîíà]. MATEC Web of Conferences, 2018, no. 251, pp. 01027. Available at: https://doi.org/10.1051/matecconf/201825101027 (accessed 28.03.2020).
    25. TCVN 7570: 2006. Aggregates for concrete and mortar - Specifications [Àãðåãàòû äëÿ áåòîíà è ðàñòâîðà - Òåõíè÷åñêèå óñëîâèÿ]. Standard. Vietnam. 2006. 11 p.
    26. TCVN 9382 : 2012. Guide for selecting proportions for concrete made with manufactured sand [Ðóêîâîäñòâî ïî ïîäáîðó ñîñòàâà áåòîíà, èçãîòîâëåííîãî ñ èñïîëüçîâàíèåì îáîãàùåííîãî ïåñêà]. Standard. Vietnam. 2012. 21 p.
    27. Bazhenov Yu. M. Tekhnologiya betona [Concrete technology]. Moscow, ASV Publ., 2011. 524 p. (In Russian).
    28. Moaveni S. Finite element analysis: theory and application with ANSYS [Êîíå÷íî-ýëåìåíòíûé àíàëèç: òåîðèÿ è ïðèìåíåíèå ANSYS]. Pearson Prentice Hall. California. 2015. 861 p.
    29. Sergeev V. V., Petrichenko M. R., Nemova D. V., Kotov E. V., Tarasova D. S., Nefedova A. V., Borodinecs A. B. The building extension with energy efficiency light-weight building walls [Íàäñòðîéêà çäàíèé ñ èñïîëüçîâàíèåì ýíåðãîýôôåêòèâíûõ ëåãêèõ ñòåí]. Magazine of Civil Engineering, 2018, no. 84(8), pp. 67-74. Available at: https://doi.org/10.18720/MCE.84.7 (accessed 28.03.2020).
    30. Korol E., Vu Dinh Tho, Nguyen Huy Hoang. Analysis of the effectiveness of thermal insulation of a multi-layer reinforced concrete slab using a layer of concrete with low thermal conductivity under the climatic conditions of Vietnam [Àíàëèç ýôôåêòèâíîñòè òåïëîèçîëÿöèè ìíîãîñëîéíîé æåëåçîáåòîííîé ïëèòû ñ èñïîëüçîâàíèåì ñëîÿ áåòîíà ñ íèçêîé òåïëîïðîâîäíîñòüþ â êëèìàòè÷åñêèõ óñëîâèÿõ Âüåòíàìà]. MATEC Web of Conferences, 2018, vol. 251, pp. 04026. Available at: https://doi.org/10.1051/matecconf/201825104026. (accessed 28.03.2020).
    31. Lurie S.A., Solyaev Yu.O., Koshurin A.A., Formalev V. F., Dobryanskiy V. N., Kachanovd M. L. Design of the corrugated-core sandwich panel with external active cooling system [Êîíñòðóêöèÿ ðèôëåíîé ñàíäâè÷-ïàíåëè ñ âíåøíåé àêòèâíîé ñèñòåìîé îõëàæäåíèÿ]. Composite Structures, 2018, vol. 188, pp. 278-286. Available at: https://doi.org/10.1016/j.compstruct.2017.12.082. (accessed 28.03.2020).
    32. Korol E. A. Trekhsloynyye ograzhdayushchiye zhelezobetonnyye konstruktsii iz legkogo betona i osobennosti ikh rascheta [Three-layer enclosing reinforced concrete structures made of lightweight concrete and features of their calculation]. Moscow, ASV Publ., 2001. 255 p. (In Russian).
    33. Korol E., Vu Dinh Tho, Nguyen Huy Hoang. Analysis the effects of lightweight concrete in the middle layer of multi-layered reinforced concrete structures on the stress-strain state using the finite element method [Àíàëèç âëèÿíèÿ ëåãêîãî áåòîíà â ñðåäíåì ñëîå ìíîãîñëîéíûõ æåëåçîáåòîííûõ êîíñòðóêöèé íà èõ íàïðÿæåííî-äåôîðìèðîâàííîå ñîñòîÿíèå ñ èñïîëüçîâàíèåì ìåòîäà êîíå÷íûõ ýëåìåíòîâ]. MATEC Web of Conferences, 2018, vol. 196, pp. 02022. Available at: https://doi.org/10.1051/matecconf/201819602022 (accessed 28.03.2020).
  • For citation: Vu Dinh Tho, Tang Van Lam, Korol E. A., Bulgakov B. I., Aleksandrova O. V., Larsen O. A. Heat-Insulating Properties of Effective Light Weight Concretes for Three-Layer Protecting Coverings of Buildings. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2020, no. 5, pp. 36-44. (In Russian). DOI: 10.33622/0869-7019.2020.05.36-44.


BACK