Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • BUILDING MATERIALS AND PRODUCTS
  • Development of Defining Equations for the Mathematical Theory of Concrete Corrosion Processes
  • UDC 69.057.12:620: 93.013:539.13 DOI: 10.33622/0869-7019.2020.05.15-27
    Boris V. GUSEV, Doctor of Technical Sciences, Professor, Corresponding Member of the Russian Academy of Sciences, e-mail: info-rae@mail.ru
    Russian University of Transport, Obraztsova, 9, str. 9, Moscow 127994, Russian Federation
    Alexandr S. FAIVUSOVICH, Doctor of Technical Sciences, Professor, e-mail: Fajvusovich@mail.ru
    International Academy of Engineering, Gazetnyy per., str. 4, Moscow 125009, Russian Federation
    Abstract. The fundamental difference of the developed defining equations is that they consider the dual system of porosity and kinetic laws of physical and chemical transformations to describe individual stages of corrosion processes. The dual porosity system comprises through capillaries (pores) of the longitudinal direction and adjacent capillaries of the transverse direction. During the reagent mass transfer in through capillaries (pores) there takes place their transfer to transverse ones, in which we can observe the neutralization (dissolution) reaction of chemically active substances in solid phase with the formation of the moving boundaries. The binding and release rate in case of leaching are determined from the respective boundary value problems and are similar in structure. In defining equations, all parameters are reduced to two generalized ones. Their values for forecasting the technical condition of operating structures are to be determined on the basis of concentration distribution of the aggressive component in concrete layer depth in the above-specified structures.
    Key words: concrete, corrosion, dual porosity, phase transformations, binding function, defining eguations, forecosting.
  • REFERENCES
    1. Gusev B. V., Faivusovich A. S. Mathematical model of atmospheric corrosion process taking into account phase transitions. Vestnik VolgGASU. Seriya: Stroitel'stvo i arkhitektura, 2013, iss. 31(50), part. 2, Stroitel'nye nauki, pp. 308-325. (In Russian).
    2. Gusev B. V., Faivusovich A. S. Engineering technique to forecast degradation of reinforced concrete structures under conditions of atmospheric corrosion. Promyshlennoe i grazhdanskoe stroitel'stvo, 2017, no. 10, pp. 28-38. (In Russian).
    3. Gusev B. V., Faivusovich A. S. Prognozirovanie dolgovechnosti betona pri vyshchelachivanii [Forecasting of concrete durability when leaching]. Moscow, Nauchnyy mir Publ., 2014. 1129 p. (In Russian).
    4. Gusev B. V., Faivusovich A. S. Mathematical theory of concrete and reinforced concrete corrosion. Tekhnologiya betonov, 2014, no. 10, pp. 35-39. (In Russian).
    5. Gusev B. V., Faivusovich A. S. Postroenie matematicheskoy teorii protsessov korrozii betona. Stroitel'nye materialy, 2008, no. 3, pp. 38-41. (In Russian).
    6. Gusev B. V., Faivusovich A. S. Mathematical model of the sulphate corrosion process taking into account physical and chemical transformations. Innovatsii i investitsii, 2018, no. 11, pp. 240-255. (In Russian).
    7. Gusev B. V., Faivusovich A. S., Levadnaya S. I. Regularities of processes of concrete leaching in the course of filtration. Promyshlennoe i grazhdanskoe stroitel'stvo, 2013, no. 12, pp. 31-36. (In Russian).
    8. Gusev B. V., Faivusovich A. S. Mathematical theory of processes of concrete corrosion. Promyshlennoe i grazhdanskoe stroitel'stvo, 2019, no. 7, pp. 58-63. (In Russian).
    9. Wan Hu Tsao, Miny Te Liang, Ta Peng Chang. Chloride - binding isotherms in concrete submitted to non-steady - state diffusion - migration model [Определение изотерм распределения хлоридов в бетоне в связанном состоянии на основе диффузионно-миграционной модели с учетом нестационарности процесса]. Journal of Marine Science and Technology, 2016, vol. 24, no. 4, pp. 822-831.
    10. Wang Y., Gong X., Wu L. Prediction model of chloride diffusion in considering the coupling effects of coarse aggregate and steel reinforcement exposed in marine tidal environment [Прогнозная модель диффузии хлоридов при рассмотрении эффектов сцепления крупного заполнителя и стальной арматуры, подвергающихся воздействию морских приливов и отливов]. Construction and Building Materials, 2019, no. 216, pp. 40-57.
    11. Yigiang Xiang, Dongmei Guo. Revised model of chloride diffusion in concrete bridge by considering complex action of load and chloride binding capacity [Пересмотренная модель диффузии хлорида в бетонном мосту с учетом комплексного действия нагрузки и связывающей способности хлорида]. 4th International Conference on the Durability of Concrete Structure, July 24-26, 2014. Purdue University, West Lafayette, In, USA.
    12. Luping T., Nilsson L. O., Basheer P. A. M.. Resistance of concrete to chloride ingress. Testing and modelling [Устойчивость бетона к попаданию хлоридов. Тестирование и моделирование]. London and New York, Spoon Press an imprint of Taylor in Francis, 2012. 239 p.
    13. Thomas M. The durability of Concrete for marine construction [Долговечность бетона для морского строительства]. Marine Concrete Structures, 2016, pp. 151-170.
    14. Tang L., Ungenamet P., Boubitsas D. Durability and service of reinforced concrete structures [Долговечность и сервисное обслуживание железобетонных конструкций]. Journal of the Chinese Ceramic Society, 2015, vol. 43, no. 10, pp. 1408-1419.
    15. Lin I. et. al. Surface chloride concentration of concrete under shallow immersion conditions [Поверхностная хлоридная концентрация бетона в условиях неглубокого погружения]. Materials (Basel), 2014, no. 7(9), pp. 6620-6631.
    16. Lin I. et al. Chloride transport and microstructure of chloride with cutout fly ash under atmospheric chloride condition [Транспортировка хлорида и микроструктура хлорида с зольной пылью в условиях атмосферного хлорида]. Construction and Building Materials, 2017, vol. 146, pp. 493-501.
    17. Ngueng P. T., Bastilas-Arteaga E., Amiri G. et. al. An efficient chloride ingress model for long-team lifetime assessment of reinforce concrete structures under realistic climate and exposure conditions [Эффективная модель поступления хлоридов для оценки длительного срока службы армированных бетонных конструкций в реальных климатических и экспозиционных условиях]. International Journal of Concrete Structures and Materials, 2017, no. 11(2), pp. 199-213.
    18. Wen-Hu Tsao, Ming-Te Liang. Time/depth dependent diffusion-convection model of chloride with transportation in concrete structures with chloride-binding isotherms [Зависящая от времени и глубины диффузионно-конвективная модель хлорида с транспортировкой в бетонных конструкциях с хлоридсвязывающими изотермами]. Journal of Marine Science and Technologic, 2015, vol. 23, no. 5, pp. 659-668.
    19. Barenblatt G. I., Zheltov Yu. P., Kochin I. P. On the main concepts of the theory of filtration of homogeneous liquids in fractured rocks. Prikladnaya matematika i mekhanika, 1960, vol. 24, no. 5, pp. 852-864. (In Russian).
    20. Romm E. S. Strukturnye modeli porovogo prostranstva gornykh porod [Structural models of pore space of rocks]. Moscow, Nedra Publ., 1985. 240 p. (In Russian).
    21. Akselrud S. A., Altshuler M. A. Vvedenie v kapillyarno-khimicheskuyu tekhnologiyu [Introduction to capillary-chemical technology]. Moscow, Khimiya Publ., 1984. 264 p. (In Russian).
    22. Rozovskiy A. D. Geterogennye khimicheskie reaktsii. Kinetika i makrokinetika [Heterogeneous chemical reactions. Kinetics and Macrokinetics]. Moscow, Nauka Publ., 1980. 324 p. (In Russian).
    23. Fizicheskaya khimiya. Teoreticheskoe i prakticheskoe rukovodstvo [Physical chemistry. Theoretical and practical guide]. Leningrad, Khimiya Publ., 1987. 880 p. (In Russian).
    24. Dyachenko A. N., Shagalov V. V. Khimicheskaya kinetika geterogennykh reaktsiy protsessa [Chemical kinetics of heterogeneous reactions of the process]. Tomsk, 2014. 96 p. (In Russian).
    25. Ovchinnikov A. A., Timashov S. F., Belyy A. A. Kinetika diffuzionno-kontroliruemykh protsessov [Kinetics of diffusion-controlled processes]. Moscow, Khimiya Publ., 1986. 286 p. (In Russian).
    26. Lifshits I. M., Slezov V. V. On the kinetics of diffusion decomposition of supersaturated solid solutions. Zhurnal eksperimental'noy i teoreticheskoy fiziki, 1958, no. 2, pp. 479-489. (In Russian).
    27. Danilyuk I. I. About Stefan's task. Uspekhi matematicheskikh nauk, 1985, vol. 40, iss. 5(245), pp. 133-171. (In Russian).
    28. Kartashov E. M. Analytical methods for solving boundary value problems of nonstationary thermal conductivity in regions with moving boundaries. Inzhenerno-fizicheskiy zhurnal, 2001, vol. 74, no. 2, pp. 171-195. (In Russian).
    29. Lykov A. V. Teoriya teploprovodnosti [Theory of thermal conductivity]. Moscow, Vysshaya shkola Publ., 1967. 600 p. (In Russian).
    30. Talukdar S., Banthia N. Carbonation in concrete infrastructure in the context of global climate change. Model refinement and represantive comentracion pathway sceneries evolution [Карбонизация в бетонной инфраструктуре в контексте глобальных изменений климата]. Journal of Materials in Civil Engineering, 2015, vol. 28, no. 4, 04015178, 7 p.
    31. Ojovan M. J., Vorlackova G. A., Golubeva Z. J. et. al. Long term field and laboratory testing of cemented radioactive wastes [Длительные полевые и лабораторные испытания цементированных радиоактивных отходов]. Journal of Hazardous Materials, 2014, vol. 187(1-3), pp. 296-302.
  • For citation: Gusev B. V., Faivusovich A. S. Development of Defining Equations for the Mathematical Theory of Concrete Corrosion Processes. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2020, no. 5, pp. 15-27. DOI: 10.33622/0869-7019.2020.05.15-27.


BACK