Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • Self-Compacting Concrete On The Basis Of Concrete Scrap Of Demolished Residential Buildings
  • UDC 691.322:691.2-493 DOI: 10.33622/0869-7019.2020.02.52-58
    Vitali V. NARUTS, e-mail:
    Oksana A. LARSEN, e-mail:
    Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    Abstract. When dismantling dilapidated buildings, a huge amount of concrete and reinforced concrete scrap is formed. The possibility of effective use of crushed concrete rubble and screening of its crushing as raw materials for self-compacting concrete is shown. The physical and mechanical properties of crushed concrete rubble are investigated. The use of a crushing dropout activated together with a polycarboxylate-based superplasticizer as a micro-filler in self-compacting concrete mixtures is also considered. The optimal content of the micro-filler in self-compacting concrete mixture is determined. The optimal grinding mode of the crushing dropout is set, due to the working conditions of the grinding equipment, to obtain the micro-filler of a given specific surface. The grain-size composition of mixture consisting of quartz sand and crushed concrete aggregate based on the maximum approximation condition to the reference Fuller's curve is designed. The mathematical-statistical method was used for the selection of the composition of self-compacting concrete with application of common structural argumentative characteristics determined by the end of the structure formation period. As these characteristics of self-compacting concrete, the volume concentration of the binder, which determines the macrostructure of concrete, and the true water-binder ratio, which has a decisive influence on the volume and nature of the pores in the cement stone, on the quality of the contact zone between the cement stone and the filler were adopted. Adequate polynomial mathematical models are obtained. They describe the properties of self-compacting concrete mix and concrete, and can also be used when designing their composition.
    Key words: self-compacting concrete, concrete scrap, rubble and dropout of crushed rubble from crushed concrete, activation, micro-filler.
    1. EEA, European Environment Agency. EU as a recycling society: present recycling levels of municipal waste and construction and demolition waste in the EU. ETC/SCP working paper [ЕС как общество вторичной переработки: существующие уровни переработки муниципальных отходов и строительных и отходов демонтажа в ЕС. Рабочий документ], Denmark, 2009, 73 p.
    2. Bravo M., de Brito J., Pontes J., Evangelista L. Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants [Физико-механические характеристики бетона, изготовленного с использованием заполнителей на заводах по переработке строительных и демонтажных отходов]. Journal of Cleaner Production, 2015, no. 99, pp. 59-74. Available at:
    3. Eurostat, environment and energy, 2010. Generation and treatment of waste [Образование и переработка отходов]. Available at: (accessed 30.09.2015).
    4. Hansen T. C. Demolition and recycling of concrete [Снос и переработка бетона]. International Journal of Cement Composites and Lightweight Concrete, 1985, no. 7, pp. 271-272.
    5. Rao A., Jha K. N., Misra S. Use of aggregates from recycled construction and demolition waste in concrete [Использование заполнителей из переработанных строительных и демонтажных отходов в бетоне]. Resources Conservation and Recycling, 2007, no. 50-1, pp. 71-81. Available at:
    6. Gusev B. V., Zagurskiy V. A. Vtorichnoe ispol'zovanie betonov [Secondary use of concrete]. Moscow, Stroyizdat Publ., 1988. 97 p. (In Russian).
    7. Gusev B. V., Kudryavtseva V. D. Crushing of reinforced concrete products and secondary use of concrete. Tekhnika i tekhnologiya silikatov, 2013, vol. 20, no. 2, pp. 25-28. (In Russian).
    8. Jimenez J. R., Ayuso J., Galviмn A. P., Loмpez M., Agrela F. Use of mixed recycled aggregates with a low embodied energy from non-selected CDW in unpaved rural roads [Использование смешанных вторичных заполнителей, полученных из строительных и демонтажных отходов, в грунтовых сельских дорогах]. Construction and Building Materials, 2012, no. 34, pp. 34-43. Available at:
    9. Modani P. O., Mohitkar V. Self-compacting concrete with recycled aggregate: a solution for sustainable development [Самоуплотняющийся бетон со вторичным заполнителем: решение для устойчивого развития]. International Journal of Civil Structural Engineering, 2014, no. 4, pp. 430-440.
    10. Manzi S., Mazzotti C., Bignozzi M. C. Short and long-term behavior of structural concrete with recycled concrete aggregate [Краткосрочное и долгосрочное поведение конструкционного бетона со вторичным заполнителем из дробленого бетона]. Cement and Concrete Composites, 2013, no. 37, pp. 312-318.
    11. Soberoмn J. G. Porosity of recycled concrete with substitution of recycled concrete aggregate: an experimental study [Экспериментальное исследование пористости заполнителя из дробленого бетона]. Cement Concrete Research, 2002, vol. 32, no. 8, pp. 1301-1311.
    12. Bazhenov Yu. M., Alimov L. A., Voronin V. V. Struktura i svoystva betonov s nanomodifikatorami na osnove tekhnogennykh otkhodov [Structure and properties of concretes with nanomodifiers based on technogenic waste]. Moscow, MGSU Publ., 2013. 204 p. (In Russian).
    13. Sagoe-Crentsil K. K., Brown T., Taylor A. H. Performance of concrete made with commercially produced coarse recycled concrete aggregate [Поведение бетона, изготовленного на вторичном заполнителе из дробленого бетона, полученного в промышленных масштабах]. Cement and Concrete Research, 2001, vol. 31, no. 5, pp. 707-712.
    14. Abdullaev M. A.-V., Abdullaev A. M. Development of a new binder based on concrete scrap crushing waste and research of its main properties. Aktual'nye problemy sovremennogo materialovedeniya [Actual problems of modern materials science]. Groznyy, Bisultanova P. Sh. Publ., 2015, pp. 33-39. (In Russian).
    15. Gusev B. V., Kudryavtseva V. D. Methods of crushing concrete products and secondary use of concrete. Beton i zhelezobeton - vzglyad v budushchee [Concrete and reinforced concrete - a look into the future]. Nauchnye trudy III Vserossiyskoy (II Mezhdunarodnoy) konferentsii po betonu i zhelezobetonu: v 7 tomakh. Moscow, 2014, vol. 6, pp. 274-279. (In Russian).
    16. Okamura H., Ouchi M. Self-compacting concrete [Самоуплотняющийся бетон]. Journal of Advanced Concrete Technology, 2003, no. 1, pp. 5-15. 17. Buldyzhov A. A., Romanov I. V., Alimov L. A., Voronin V. V. Management of structure formation of self-compacting concrete mixes. Tekhnologii betonov, 2014, no. 1(90), pp. 33-35. (In Russian).
  • For citation: Naruts V. V., Larsen O. A. Self-Compacting Concrete on the Basis of Concrete Scrap of Demolished Residential Buildings. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2020, no. 2, pp. 52-58. (In Russian). DOI: 10.33622/0869-7019.2020.02.52-58.