Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) Web of Science
  • BUILDING STRUCTURES, BUILDINGS AND FACILITIES
  • Determination of Static-Dynamic Deformation Parameters of Concrete
  • UDC 624.044:666.972 DOI: 10.33622/0869-7019.2020.01.04-11
    Nataliya V. FEDOROVA, e-mail: FedorovaNV@mgsu.ru
    Mikhail D. MEDYANKIN, e-mail: gbk@mgsu.ru
    Olesya B. BUSHOVA, e-mail: gbk@mgsu.ru
    Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    Abstract. A variant of the deformation model of static-dynamic deformation of concrete, when varying the level of initial static loading, is proposed. On the basis of the theory of plasticity of concrete and reinforced concrete by G.A. Geniev, analytical dependencies have been built to determine the parameters of the diagram of static-dynamic deformation of concrete under different loading modes, and deformation criteria of strength have been formulated in the assumption of a single-parameter connection "limit strains-limit stresses" not only from the type, but also from the level of stress state. Numerical studies on the example of uniaxial loading show that the maximum dynamic strength, the maximum deformability of concrete and the maximum permissible time of dynamic impact in case of dynamic loading depend on the level of initial stress state in case of static loading of concrete, from which dynamic loading to the limit state is performed. The numerical analysis of static-dynamic deformation of compressed reinforced concrete elements under different loading modes carried out using the considered model also confirmed the results of experimental studies that microcracking in concrete under the static loading starts not with some level value of stresses, but practically from the moment of concrete loading beginning. The obtained results are of interest for solving applied problems related to the problem of survival and protection of buildings and structures from progressive collapse, in particular when determining criteria of concrete strength under a particularly tense state.
    Key words: concrete, static-dynamic deformation, strength criteria, deformation limits, modulus of deformation.
  • REFERENCES
    1. Bondarenko V. M., Kolchunov V. I. Exposure of the survivability of reinforced concrete. Izvestija vuzov. Stroitel'stvo, 2007, no. 5, pp. 4-8. (In Russian).
    2. Travush V. I., Fedorova N. V. Survivability of structural systems of buildings with special effects. Magazine of Civil Engineering, 2018, no. 81(5), pp. 73-80.
    3. Fedorov V. S., Mednov E. A. The effect of the initial stress-strain state and the load level on the dynamic effect that occurs when the support collapses in continuous steel beams. Stroitel'stvo i rekonstrukcija, 2010, no. 6, pp. 48-52. (In Russian).
    4. Kabancev O. V., Tamrazjan A. G. Accounting for changes in the design scheme when analyzing the operation of the structure. Inzhenerno-stroitel'nyj zhurnal, 2014, no. 5(49), pp. 15-26. DOI: 10.5862/MCE.49.2. (In Russian).
    5. Elsanadedy H. M., Almusallam T. H., Al-Salloum Y. A., Abbas H. Investigation of precast RC beam-column assemblies under column loss scenario. Construction and Building Materials, 2017, no. 142, pp. 552-571.
    6. Saffari H., Javad Mashhadi J. Assessment of dynamic increase factor for progressive collapse analysis of RC structures. Engineering Failure Analysis, 2018, no. 84, pp. 300-310. Available at: https://doi.org/10.1016/j.engfailanal.2017.11.011.
    7. Kolchunov V. I., Kolchunov Vl. I., Fedorova N. V. Deformation models of reinforced concrete under special impacts. Promyshlennoe i grazhdanskoe stroitel'stvo, 2018, no. 8, pp. 54-60. (In Russian).
    8. Geniev G. A., Kissjuk V. N., Tjupin G. A. Teorija plastichnosti betona i zhelezobetona [Theory of plasticity of concrete and reinforced concrete]. Moscow, Strojizdat Publ., 1974. 316 p. (In Russian).
    9. Geniev G. A., Kolchunov V. I., Kljueva N. V. et al. Prochnost' i deformativnost' zhelezobetonnyh konstrukcij pri zaproektnyh vozdejstvijah [Strength and deformability of reinforced concrete structures under beyond design impacts]. Moscow, ASV Publ., 2004. 216 p. (In Russian).
    10. Geniev G. A. Method for determining the dynamic strength limits of concrete. Beton i zhelezobeton, 1998, no. 1, pp. 18-19. (In Russian).
    11. Plevkov V. S., Belov V. V., Baldin I. V., Nevskij A. V. Models of nonlinear deformation of carbon fiber concrete under static and short-term dynamic effects. Vestnik grazhdanskih inzhenerov, 2016, no. 3(56), pp. 72-82. (In Russian).
    12. Popov N. N., Rastorguev B. S. Dinamicheskij raschet zhelezobetonnyh konstrukcij [Dynamic calculation of reinforced concrete structures]. Moscow, Strojizdat Publ., 1974. 207 p. (In Russian).
    13. Zinov'ev V. N. The effect of dilation and state diagram of concrete under uniaxial and triaxial compression. Part 2. Beton i zhelezobeton, 2015, no. 2, pp. 27-31. (In Russian).
    14. Zinov'ev V. N., Smoljagov O. O., Grigor'ev A. A. Methods of investigation of concrete microcrack formation under uniaxial compression. Beton i zhelezobeton, 2014, no. 1, pp. 27-31. (In Russian).
    15. Zinov'ev V. N. Combined state diagram and parametric levels of concrete microcrack formation. Beton i zhelezobeton, 2015, no. 3, pp. 28-31. (In Russian).
    16. Bascoul A. State of the art report. Part 2: Mechanical microcracking of concrete. Materials and Structures, 1996, vol. 29, March, pp. 67-78.
    17. Almusallam T., Al-Salloum Yo., Tuan Ngo Priyan Mendis, Abbas H. Experimental investigation of progressive collapse potential of ordinary and special moment-resisting reinforced concrete frames. Materials and Structures, 2017, no. 50:137, pp. 1-16.
    18. Ahmadi R., Rashidian O., Abbasnia R, Nav F. M., Usefi N. Experimental and numerical evaluation of progressive collapse behavior in scaled RC beam-column subassemblage. Hindawi Publishing Corporation Shock and Vibration, 2016, pp. 1-17.
    19. Hou Jian, Yang Zheng. Simplified models of progressive collapse response and progressive collapse-resisting capacity curve of RC beam-column substructures. American Society of Civil Engineers, 2014, pp. 1-7.
    20. Klyueva N. V., Koren'kov P. V. Method of experimental determination of parameters of survivability of reinforced concrete frame-rod structural systems. Promyshlennoe i grazhdanskoe stroitel'stvo, 2016, no. 2, pp. 44-48. (In Russian).
    21. Patent 2696815 RF. Sposob jeksperimental'nogo opredelenija statiko-dinamicheskih harakteristik betona [Method for experimental determination of static-dynamic characteristics of concrete]. Fedorova N. V., Medjankin M. D., zajavitel' i patentoobladatel' FGBOU VO "NIU MGSU". Zajavleno 17.01.2019, opublikovano 06.08.2019. (In Russian).
    22. Bushova O. B., Zinov'ev V. N. Classification of curves for the dependence of ultrasound velocity changes on stresses in concrete during compression. Sbornik dokladov Mezhdunarodnoj nauchno-prakticheskoj konferencii, posvjashhennoj 150-letiju so dnja rozhdenija A. F. Lolejta "Sovremennye metody rascheta zhelezobetonnyh i kamennyh konstrukcij po predel'nym sostojanijam" [Proc. International. sci.-prakt. conf. dedicated to the 150th anniversary of the birth of A. F. Loleyt "Modern methods for calculating reinforced concrete and stone structures by limit states"]. Moscow, MGSU Publ., 2018, pp. 68-75. (In Russian).
    23. Zinov'ev V. N. Determination of the boundaries of microcrack formation of concrete during compression by ultrasonic pulse method. Beton i zhelezobeton, 2011, no. 1, pp. 2-6. (In Russian).
  • For citation: Fedorova N. V., Medyankin M. D., Bushova O. B. Determination of Static-Dynamic Deformation Parameters of Concrete. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2020, no. 1, pp. 4-11. (In Russian). DOI: 10.33622/0869-7019.2020.01.04-11.


BACK