Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • WATER SUPPLY, SEWERAGE, BUILDING SYSTEMS OF WATER RESOURCES PROTECTION
  • Modelling Of Transport And Capture Of Particles In A Porous Medium
  • UDC 624.131.372 DOI: 10.33622/0869-7019.2019.11.56-60
    Yuri V. OSIPOV, e-mail: osipovyu@mgsu.ru
    Yulia G. ZHEGLOVA, e-mail: jeglovayug@mgsu.ru
    Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    Abstract. The study of the transport and capture of particles moving in a fluid flow in a porous medium is an important problem of underground hydromechanics, which occurs when strengthening loose soil and creating watertight partitions for building tunnels and underground structures. A one-dimensional mathematical model of long-term deep filtration of a monodisperse suspension in a homogeneous porous medium with a dimensional particle retention mechanism is considered. It is assumed that the particles freely pass through large pores and get stuck at the inlet of small pores whose diameter is smaller than the particle size. The model takes into account the change in the permeability of the porous medium and the permissible flow through the pores with increasing concentration of retained particles. A new spatial variable obtained by a special coordinate transformation in model equations is small at any time at each point of the porous medium. A global asymptotic solution of the model equations is constructed by the method of series expansion in a small parameter. The asymptotics found is everywhere close to a numerical solution. Global asymptotic solution can be used to solve the inverse filtering problem and when planning laboratory experiments.
    Key words: filtration problem, porous medium, transport and capture of particles, dimensional mechanism of particles capture, global asymptotics.
  • REFERENCES
    1. Tsuji M., Kobayashi S., Mikake S., Sato T., Matsui H. Post-grouting experiences for reducing groundwater inflow at 500 m depth of the Mizunami Underground Research Laboratory [Опыт после цементации для снижения притока подземных вод на глубину 500 м из подземной исследовательской лаборатории Мизунами]. Japan. Procedia Engineering, 2017, vol. 191, article ID 543-5502017.
    2. Lyapidevskaya O. Grouting mortar for annular injection [Раствор укрепителя для кольцевого впрыска]. MATEC Web of Conferences, 2018, vol. 251, article ID 01004.
    3. Bedrikovetsky P. Mathematical theory of oil and gas recovery: with applications to ex-USSR oil and gas fields [Математическая теория добычи нефти и газа]. Springer Science & Business Media, 2013. 576 p.
    4. Civan F. Reservoir formation damage [Повреждение подземного пласта]. USA, Burlington, Gulf Professional Publ., 2015. 1042 p.
    5. Tien C., Ramarao B. V. Granular filtration of aerosols and hydrosols [Зернистая фильтрация аэрозолей и гидрозолей]. Amsterdam, Elsevier Publ., 2007. 512 p.
    6. Badalyan A., You Z., Aji K., Bedrikovetsky P., Carageorgos T., Zeinijahromi A. Size exclusion deep bed filtration: Experimental and modelling uncertainties [Глубинная фильтрация с исключением по размеру: экспериментальные и модельные неопределенности]. Review of Scientific Instruments, 2014, vol. 85(1), article ID 015111.
    7. Herzig J. P., Leclerc D. M., Legoff P. Flow of suspensions through porous media - application to deep filtration [Поток суспензий через пористую среду - применение для глубинной фильтрации]. Industrial and Engineering Chemistry, 1970, vol. 62(5), pp. 8-35.
    8. Vyazmina E. A., Bedrikovetskii P. G., Polyanin A. D. New classes of exact solutions to nonlinear sets of equations in the theory of filtration and convective mass transfer [Новые классы точных решений нелинейных систем уравнений в теории фильтрации и конвективного массопереноса]. Theoretical Foundations of Chemical Engineering, 2007, vol. 41(5), pp. 556-564.
    9. Bedrikovetsky P. Upscaling of stochastic micro model for suspension transport in porous media [Усреднение стохастической микромодели для переноса суспензии в пористых средах]. Transport in Porous Media, 2008, vol. 75, pp. 335-369.
    10. You Z., Osipov Y., Bedrikovetsky P., Kuzmina L. Asymptotic model for deep bed filtration [Асимптотическая модель глубинной фильтрации]. Chemical Engineering Journal, 2014, vol. 258, pp. 374-385.
    11. Kuzmina L. I., Osipov Yu. V. Particle transportation at the filter inlet [Перенос частиц на входе фильтра]. International Journal for Computational Civil and Structural Engineering, 2014, vol. 10, iss. 3, pp. 17-22.
    12. Kuzmina L. I., Osipov Yu. V. Asymptotic model of filtration in almost stationary model [Асимптотическая модель фильтрации в почти стационарной модели]. International Journal for Computational Civil and Structural Engineering, 2016, vol. 12, iss. 1, pp. 158-163.
    13. Toro E. F. Riemann solvers and numerical methods for fluid dynamics [Решатели Римана и численные методы гидродинамики]. Springer, Dordrecht. 2009. 686 p.
    14. Galaguz Y. P. Realization of the TVD-scheme for a numerical solution of the filtration problem [Реализация TVD-схемы для численного решения задачи фильтрации]. International Journal for Computational Civil and Structural Engineering, 2017, vol. 13(2), pp. 93-102.
    15. Galaguz Y. P., Safina G. L. Modeling of fine migration in a porous medium [Моделирование переноса малых частиц в пористой среде]. MATEC Web of Conferences, 2016, vol. 86, article ID 03003.
    16. Bedrikovetsky P., You Z., Badalyan A., Osipov Y., Kuzmina L. Analytical model for straining-dominant large-retention depth filtration [Аналитическая модель глубинной фильтрации с большой задерживающей способностью]. Chemical Engineering Journal, 2017, vol. 330, pp. 1148-1159.
    17. Osipov Yu., Safina G. and Galaguz Yu. Calculation of the filtration problem by finite differences methods [Расчет задачи фильтрации методами конечных разностей]. MATEC Web of Conferences, 2018, vol. 251, article ID 04021.
    18. Alvarez A. C., Hime G., Marchesin D. and Bedrikovetsky P. G. The inverse problem of determining the filtration function and permeability reduction in flow of water with particles in porous media [Обратная задача определения функции фильтрации и снижения проницаемости в потоке воды с частицами в пористых средах]. Transport in Porous Media, 2007, vol. 70(1), pp. 43-62.
    19. Vaz A., Bedrikovetsky P., Fernandes P. D., Badalyan A., Carageorgos T. Determining model parameters for non-linear deep-bed filtration using laboratory pressure measurements [Определение параметров модели для нелинейной глубинной фильтрации с использованием лабораторных измерений давления]. Journal of Petroleum Science and Engineering, 2017, vol. 151, pp. 421-433.
  • For citation: Osipov Yu. V., Zheglova Yu. G. Modelling of Transport and Capture of Particles in a Porous Medium. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2019, no. 11, pp. 56-60. (In Russian). DOI: 10.33622/0869-7019.2019.11.56-60.


BACK