Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • Reinforcement of Stretched Elements by Polymers Based on High-Strength Fiber
  • UDC 624.014.2
    Aleksandr I. DANILOV, e-mail:
    Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    Ivan A. KALUGIN, e-mail:
    PAO RKK Energia, ul. Lenina, 4A, Korolev city, Moscow Region 141070, Russian Federation
    Abstract. The design of the reinforcement of a stretched element, which does not have local mechanical damages within the length of the reinforcement area, with glued symmetrically polymer tapes based on high-strength fiber is considered. Efficiency of application of polymeric materials on the basis of high-strength fiber with the use of glue connections is analyzed. The influence of such factors as the tensile elasticity modulus of polymer fibers, shear stiffness of the adhesive, the ratio of the stiffness of the reinforcement (polymer) and the stretched element and a number of other factors on the behavior of the connection was studied using the analytical approach and the finite element method. A comparison of the corresponding numerical results of the calculation of the strengthening of the steel strip with carbon fiber tapes was carried out. The results obtained show that the effectiveness of the strengthening use is the most significantly manifested in extreme situations, when in the absence of strengthening in the element, stresses close to the ultimate strength of steel can develop. For a preliminary assessment of the impact of various parameters on the work of the glued connection, the analytical approach is more effective.
    Key words: glued connection, adhesive layer, shear strength, shear modulus, analytical solution, numerical experiment.
    1. Ovchinnikov I. I., Ovchinnikov I. G., Chesnokov G. V., Tatiev D. A., Pokulaev D. V. Usileniye metallicheskich konstrukciy fibroarmirovannymi plastikami. Internet-jurnal Naukovedeniye, 2014, iss. 3, May-June. (In Russian).
    2. Tusnin A. R., Schurov E. O. Experimental investigation of a glue compound of elements from steel and carbon composite material. Promyshlennoe i grajdanskoe stroitelstvo, 2017, no. 7, pp. 69-73. (In Russian).
    3. Tusnin A. R., Schurov E. O. Experimental studies of steel elements strengthened by carbon fiber composite materials. Promyshlennoe i grajdanskoe stroitelstvo, 2017, no. 9, pp. 25-29. (In Russian).
    4. Danilov A. I. Concept of control over destruction process of a building object. Promyshlennoe i grazhdanskoe stroitelstvo, 2014, no. 8, pp. 74-77. (In Russian).
    5. Tavakkolizadeh, Saadatmanesh H. Fatigue strength of steel girders strengthened with carbon fiber reinforced polymer patch [Усталостная прочность стальных балок с усилением лентой из углепластика]. Journal of Structural Engineering, ASCE, 2003, no. 129, pp. 186-196.
    6. El-Tawil S., Ekiz E., Goel S., Chao S.-H. Retraining local and global buckling behavior of steel plastic hinges using CFRP [Обеспечение местной и общей устойчивости с помощью CFRP при образовании пластических шарниров в стальных элементах]. Journal of Constructional Steel Research, 2011, no. 67, pp. 261-269.
    7. Tsouvalis N. G., Mirisiotis L. S., Dimou D. N. Experimental and numerical study of the fatigue behaviour of composite patch reinforced cracked steel plates [Экспериментальное и численное исследование усталостной прочности усиленных композитами стальных пластин с трещинами]. International Journal of Fatigue, 2009, no. 31, pp. 1613-1627.
    8. Shaat A., Schnerch D., Fam A., Rizkalla S. Retrofit of steel structures using fiber reinforced polymers (FRP): state-of-the-art [Восстановление стальных конструкций с помощью армированных волокном полимеров (FRP)]. Centre for Integration of Composites into Infrastructure, 2003.
    9. Nguyen T.-C., Bai Y., Zhao X.-L., Al-Mahaidi R. Mechanical characterization of steel/CFRP double strap joints at elevated temperatures [Механические свойства двойных соединений сталь - лента из CFRP при повышенных температурах]. Composite Structures, 2011, no. 93, pp. 1604-1612.
    10. Bocciarelli M., Colombi P., Fava G., Poggi C. Fatigue performance of tensile steel members strengthened with CFRP plates [Усталостная прочность усиленных пластинами из CFRP растянутых стальных элементов]. Composite Structures, 2009, no. 87, pp. 334-343.
    11. Liu H., Al-Mahaidi R. and Zhao X. Experimental study of fatigue crack growth behavior in adhesively reinforced steel structures [Экспериментальные исследования развития усталостных трещин в усиленных с применением клеевых соединений стальных конструкциях]. Compos. Struct., 2009, vol. 90, pp. 12-20.
    12. Harries K. A., Peck A. J., and Abraham E. J. Enhancing stability of structural steel sections using FRP [Повышение устойчивости стальных элементов с помощью FRP (армированных волокном полимеров)]. Thin-Walled Structure, 2009, vol. 47, pp. 1092-1101.
    13. Patnaik A. K., Bauer C. L. Strengthening of steel beams with carbon FRP laminates [Усиление стальных балок с использованием углеродных FRP-ламинатов]. Proceeding of the 4th Advanced Composites for Bridges and structures conference, Calgary, Canada, 2004.
    14. Colombi P., Bassetti A., Nussbaumer A. Analysis of cracked steel members reinforced by prestressed composite patch [Анализ поведения поврежденных трещинами стальных элементов с усилением предварительно напряженными композитными накладками]. Fatigue Fract Eng Mater Struct, 2003, vol. 26, no. 1, pp. 59-67.
    15. Tдljsten B., Hansen C. S., Schmidt J. W. Strengthening of old metallic structures in fatigue with prestressed and non-prestressed CFRP laminates [Предотвращение усталостного разрушения при износе металлических конструкций путем их усиления ламинатами из углепластика с применением и без применения предварительного напряжения]. Construction and Building Materials, 2009, no. 23(4), pp. 1665-1677.
    16. Ghafoori E., Motavalli M., Botsis J., Herwig A., Galli M. Fatigue strengthening of damaged metallic beams using prestressed unbonded and bonded CFRP plates [Усиление металлических балок с усталостными повреждениями CFRP-пластинами с применением и без применения клеевых соединений]. International Journal of Fatigue, 2012, no. 44, pp. 303-315.
    17. Ghafoori E., Schumacher A., Motavalli M. Fatigue behavior of notched steel beams reinforced with bonded CFRP plates: determination of prestressing level for crack arrest [Усталостная прочность стальных балок с локальными дефектами, усиленных путем оклеивания CFRP-пластинами: определение необходимого уровня предварительного напряжения для блокирования трещины]. Engineering Structures, 2012, no. 45, pp. 270-283.
  • For citation: Danilov A. I., Kalugin I. A. Reinforcement of Stretched Elements by Polymers Based on High-Strength Fiber. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2018, no. 12, pp. 25-31. (In Russian).