Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • Modelling of Filtration of Solution in a Porous Medium
  • UDC 624.131
    Yury V. OSIPOV, e-mail:
    Yulia G. ZHEGLOVA, e-mail:
    Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    Abstract. Soil strengthening and creating waterproof partitions is an important stage in the construction of underground storage facilities for toxic and radioactive waste. The solution of bentonite injected into the soil under pressure deeply penetrates into the porous medium and expands, absorbing water, clogs the pores of the rock and forms a waterproof layer. A filtration model with several geometric pore blocking mechanisms acting simultaneously is considered. Pores of small sizes are locked by single particles. If the pore size exceeds the diameter of the particles, it can be blocked by stable structures of several particles of different configurations. A mathematical model of a one-dimensional filtration of a mono-disperse suspension with several mechanisms for locking pores of various sizes has been constructed. For small filtration coefficients, global asymptotic solutions are constructed. A basic model with two mechanisms of pore blocking has been studied in detail. Analytical solutions are compared with the results of numerical simulation. The applicability of various types of asymptotics is studied.
    Key words: porous rock, filtration, pore blocking, arched jumper, analytical solution.
    1. Yoon J., Chadi S. El Mohtar. Groutability of granular soils using bentonite grout based on filtration model [Укрепление гранулированной почвы раствором бентонита на основе модели фильтрации]. Transport in Porous Media, 2014, no. 102(3), pp. 365-385.
    2. Herzig J. P., Leclerc D. M., Legoff P. Flow of suspensions through porous media - application to deep filtration [Поток суспензий через пористые среды - применение к глубинной фильтрации] Industrial & Engineering Chemistry, 1970, no. 62, pp. 8-35.
    3. Elimelech M., et al. Particle deposition and aggregation: measurement, modelling and simulation [Осаждение и агрегация частиц: измерение, моделирование и симуляция]. Butterworth-Heinemann, New York, 2013.
    4. Chrysikopoulos C. V., Syngouna V. I. Effect of gravity on colloid transport through water-saturated columns packed with glass beads: modeling and experiments [Влияние гравитации на перемещение коллоидов через насыщенные водой колонны со стеклянными шариками: моделирование и эксперименты]. Journal of Environmental Science and Technology, 2014, no. 48, pp. 6805-6813.
    5. Martins-Costa M. L., et al. A hyperbolic mathematical modeling for describing the transition saturated/unsaturated in a rigid porous medium [Гиперболическое математическое моделирование для описания перехода, насыщенного / ненасыщенного состояния в жесткой пористой среде]. International Journal of Non-Linear Mechanics, 2017, no. 95, pp. 168-177.
    6. Ikni T., et al. Particle transport within water-saturated porous media: Effect of pore size on retention kinetics and size selection [Транспортировка частиц в водонасыщенных пористых средах: влияние размера пор на кинетику удерживания и выбор размера частиц]. Comptes Rendus Geoscience, 2013, no. 345, pp. 392-400.
    7. Bashtani F., Ayatollahi S., Habibi A., Masihi M. Permeability reduction of membranes during particulate suspension flow; analytical micro model of size exclusion mechanism [Снижение проницаемости мембран потоком частиц суспензии; аналитическая микромодель размерного механизма]. Journal of Membrane Science, 2013, no. 435, pp. 155-164.
    8. Ramachandran V., Fogler H. S. Plugging by hydrodynamic bridging during flow of stable colloidal particles within cylindrical pores [Запирание гидродинамическими сводовыми перемычками при течении стабильных коллоидных частиц в цилиндрических порах]. Journal of Fluid Mechanics, 1999, no. 385, pp. 129-156.
    9. Guedes R. G., et al. Deep bed filtration under multiple particle-capture mechanisms [Глубинная фильтрация с несколькими механизмами захвата частиц]. SPE Journal, 2009, no. 14(3). DOI: 10.2118/98623-PA.
    10. Kuzmina L. I., Osipov Yu V., Zheglova Yu. G. Analytical model for deep bed filtration with multiple mechanisms of particle capture [Аналитическая модель глубинной фильтрации с множественными механизмами захвата частиц]. International Journal of Non-Linear Mechanics, 2018, no. 105, pp. 242-248.
    11. Bedrikovetsky P. G., et al. Characterization of deep bed filtration system from laboratory pressure drop measurements [Характеристика системы глубинной фильтрации по лабораторным измерениям перепада давления]. Journal of Petroleum Science and Engineering, 2001, no. 32(3), pp. 167-177.
  • For citation: Osipov Yu. V., Zheglova Yu. G. Modelling of Filtration of Solution in a Porous Medium. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2018, no. 11, pp. 75-80. (In Russian).