Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • Analysis of the Truss with Damaged Elements
  • UDC 691.418
    Alexander R. TUSNIN, e-mail:
    Maria P. BERGER, e-mail:
    Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    Abstract. Considerable practical interest is the calculation of the bearing capacity of large-span trusses, separate elements of which, in the course of operation, can be damaged due to hidden defects, design errors, manufacturing, installation, operation, accidents or terrorist impacts. The article deals with the work of damaged trusses with due regard for the dynamic effects which develop in the trusses, when individual rods are out of order. It is assumed that the flexural rigidity of the damaged truss influences on the dynamic forces in the structure. With this in mind, a formula is presented for determining the dynamic factor when calculating a damaged truss. The concepts of the "exclusion time" of the element from the calculation scheme and the "excluded element" are formulated. The technique of numerical calculation of damaged rod structures is presented. The dependencies of dynamic forces on the time of exclusion and the location of the excluded element are revealed. On the basis of the studies conducted, recommendations on determination of dynamic coefficients for carrying out calculations when designing trusses.
    Key words: truss, survivability, progressive destruction, dynamic coefficient, time of exclusion.
    1. Report of the inquiry into the collapse of flats at Ronan Point, Canning Town, London. UK [Отчет об аварии жилого дома по адресу Ронан Пойнт, Кэннинг Таун, Лондон, Великобритания]. MSO, 1968 (ЦИНИС, перевод 18736). 48 p.
    2. Belyayev N. M. Soprotivlenie materialov [Strength of materials]. Moscow, Nauka Publ., 1965. 856 p. (In Russian).
    3. Yeremeyev P. G. Prevention of avalanche-like (progressive) collapse of load-bearing structures of unique long-span structures during emergency operations. Stroitel'naya mekhanika i raschet sooruzhenij, 2006, no. 2, pр. 65-72. (In Russian).
    4. Strugatskiy Yu. M. Ensuring the strength of panel buildings with local destruction of their load-bearing structures. Issledovaniya nesushchikh betonnykh i zhelezobetonnykh konstruktsiy sbornykh mnogoetazhnykh zdaniy [Studies of bearing concrete and reinforced concrete structures of prefabricated multi-storey buildings]. Moscow, MNIITEP Publ., 1980. Pp. 3-19. (In Russian).
    5. Nazarov Yu. P., Gorodetskiy A. S., Simbirkin V. N. To the problem of ensuring the survivability of building structures under emergency influences. Stroitel'naya mekhanika i raschet sooruzhenij, 2009, no. 4, pp. 5-9. (In Russian).
    6. Zenin S. A., Sharipov R. Sh., Kudinov O. V., et al. Calculations of large-panel buildings on stability against progressive collapse by the methods of the final element. Stroitel'nye nauki , 2016, no. 4, pp. 109-113.
    7. Belostotskiy A. M., et al. Calculations of buildings for stability against progressive collapse in view of physical aand geometric nonlinearities. Teoriya i praktika rascheta zdaniy, sooruzheniy i elementov konstruktsiy. Analiticheskiye i chislennyye metody. Proc. of international scientific and practical conference. Moscow, MGSU Publ., 2008. Pp. 183-193. (In Russian).
    8. Strugatskiy Yu. M., Shapiro G. I. Security of Moscow residential buildings of mass series in emergency situations. Promyshlennoe i grazhdanskoe stroitel'stvo, 1998, no. 8, pp. 37-41. (In Russian).
    9. Nethercot D. A. Design of building structures to improve their resistance to progressive collaps [Проектирование строительных конструкций с целью повышения их устойчивости к прогрессирующему обрушению]. Procedia Engineering, 2011, no. 14, pp. 1-13.
    10. Hang Y., Izzuddin B. A., Xiao-Xiong Z. Progressive collapse of steel-framed buildings: influence of modelling approach [Прогрессирующее обрушение зданий со стальным каркасом: влияние метода моделирования]. Advanced Steel Construction, 2010, vol. 6, no. 4, рp. 932-948.
    11. Stylianidis P. M., Nethercot D. A., Izzuddin B. A., Elghazouli A. Y. Robustness assessment of frame structures using simplified beam and grillage models [Оценка живучести каркасных конструкций с использованием упрощенных балочных схем]. Engineering Structures, 2016, vol. 115, рp. 78-95.
    12. Ellingwood B. R., Smilowitz R., Dusenberry D. O., Duthinh D., et al. Best practices for reducing the potential for progressive collapse in buildings [Рекомендации по снижению риска прогрессирующего обрушения зданий и сооружений]. National Institute of Standards and Technology, 2007. NISTIR 7396, USA.
    13. Marchand K. A., Stevens D. J. Progressive сollapse сriteria and design approaches improvement [Критерии прогрессирующего обрушения и усовершенствование подходов к проектированию]. Journal of Performance of Constructed Facilities, 2015, 29(5):B4015004.
    14. Stylianidis P. M., Nethercot D. A. Modelling of connection behaviour for progressive collapse analysis [Моделирование поведения конструкции при расчете на прогрессирующее обрушение]. Journal of Constructional Steel Research, 2015, vol. 113, pр. 169-184.
    15. Marchand K. A., Alfawakhive F. Blast and progressive collapse [Взрыв и прогрессирующее обрушение]. Facts for Steel Building, AISC, 2005, vol. 2. 67 p.
    16. Kandil K. S., et al. Progressive collapse of steel frames [Прогрессирующее обрушение зданий со стальным каркасом]. World Journal of Engineering and Technology, 2013, no. 1, рр. 39-48.
    17. Kaewkulchai G., Williamson E. B. Beam element formulation and solution procedure for dynamic progressive collapse analysis [Моделирование балочного элемента и методика динамического расчета на устойчивость к прогрессирующему обрушению]. Computers & Structures, 2004, vol. 82, pp. 639-651.
    18. Styliandis P. M., Nethercot D. A., Izzuddin B. A., Elghazouli A. Y. Modelling of beam response for progressive collapse analysis [Моделирование поведения балки при анализе на прогрессирующее обрушение]. Structures, 2015, vol. 3, рp.137-152.
    19. Kudishin Yu. I., Drobot D. Yu. Stability of structures in emergency situations. Metallicheskiye zdaniya, 2008, no. 4[8], pp. 20-22; no. 5[9], pp. 21-23. (In Russian).
    20. Drobot D. Yu. Assessment of robustness of the Indoor Skating Center in Krylatskoe. Vestnik MGSU, 2009, no. 2, pp. 116-119. (In Russian).
    21. Kudishin Yu. I. Conceptual problems of robustness of building structures. Vestnik MGSU, 2009, no. 2(spec.), pp. 28-36. (In Russian).
    22. Kudishin Yu. I., Drobot D. Yu. To the question of the robustness of building structures. Stroitel'naya mekhanika i raschet sooruzhenij, 2008, no. 2(217), pp. 36-43. (In Russian).
    23. Kudishin Yu. I., Drobot D. Yu. Stability of building structures is an important factor in reducing losses in emergency situations. Metallicheskiye konstruktsii, 2009, no. 1, pp. 59-71. (In Russian).
    24. Danilov A. I. The concept of controlling the process of destrucion of a building object. Promyshlennoe i grazhdanskoe stroitel'stvo, 2014, no. 8, pp. 74-77. (In Russian).
  • For citation: Tusnin A. R., Berger M. P. Analysis of the Truss with Damaged Elements. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2018, no. 11, pp. 35-41. (In Russian).