Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science


  • BUILDING STRUCTURES, BUILDINGS AND FACILITIES
  • Stress-Strain State of Attachment Point of Curtain Frame Wall with Cladding on the Basis of Steel Cold-Bent Profile
  • UDC 692.2
    Tatiana V. NAZMEEVA, e-mail: naztv@mail.ru
    Peter the Great St. Petersburg Polytechnic University, ul. Polytechnicheskaya, 29, St. Petersburg 195251, Russian Federation
    Aleksandr D. SIVOKHIN, e-mail: a1sivokhin@gmail.com
    Bilfinger Tebodin B.V., 2-y Syromyatnichesky per., 1, Moscow 105120, Russian Federation
    Abstract. External curtain frame wall with cladding on the basis of the frame of steel cold-bent galvanized profile is a promising direction in building. During their construction, there are no "wet" processes, the total labor intensity is reduced compared with the walls of brick or aerated concrete. There are several types of frame walls with cladding, depending on the method of manufacturing the wall and the method of coupling with the bearing structures. External walls of high-rise buildings are subjected to significant wind and ice loads. The technical solution of the attachment points of the frame of these walls to the bearing structures requires a detailed study as well as accounting the thinness of sections of the frame studs. The results of the study of the stress-strain state of the fastening unit of the frame rack to the reinforced concrete slab with due regard for the loads acting on it with the use the finite element method are presented. The Abaqus software package was used for numerical simulation.
    Key words: frame wall with cladding, thin-walled steel cold-bent profile, bearing capacity, stress-strain state of attachment point, numerical simulation.
  • REFERENCES
    1. Vatin N. I., Nazmeeva T., Guslinscky R. Problems of cold-bent notched c-shaped profile members [Проблемы использования стального холодногнутого просечного С-профиля]. Advanced Materials Research, 2014, vol. 941-944, pp. 1871-1875.
    2. Tusnin A., Selyantsev I. The influence of cross-section shape changing on work of cold formed beam [Влияние изменения формы поперечного сечения на работу балки из холодногнутого профиля]. Advanced Materials Research, 2014, vol. 1025-1026, pp. 361-365.
    3. Aguero A., Pallares L., Pallares F.J. Equivalent geometric imperfection definition in steel structures sensitive to flexural and/or torsional buckling due to compression [Эквивалентное определение геометрического несовершенства в стальных конструкциях, чувствительных к изгибу и/или деформации при кручении вследствие сжатия]. Engineering Structures, 2015, vol. 96, pp. 160-177.
    4. Al Ali M. Compressed thin-walled cold-formed steel members with closed cross-sections [Сжатые тонкостенные элементы из холодногнутого профиля закрытого сечения]. Advanced Materials Research, 2014, vol. 969, pp. 93-96.
    5. Basaglia C., Camotim D., Silvestre N. Post-buckling analysis of thin-walled steel frames using generalised beam theory (GBT) [Анализ результатов потери устойчивости каркасов из стальных тонкостенных конструкций с использованием обобщенной теории балок]. Thin-Walled Structures, 2013, vol. 62, pp. 229-242.
    6. Wael F. Ragheb Local buckling of welded steel I-beams considering flange-web interaction [Локальная потеря устойчивости сварных стальных двутавровых балок с учетом взаимодействия фланца и стенки]. Thin-Walled Structures, 2015, vol. 97, pp. 241-249.
    7. Rasmussen K., Zhang X., Zhang H. Beam-element-based analysis of locally and/or distortionally buckled members: Theory [Балочно-элементный анализ элементов, деформированных вследствие потери местной устойчивости или потери формы сечения: теория]. Thin-Walled Structures, 2016, vol. 98, pp. 285-292.
    8. Ungermann D., Lubke S., Brune B. Tests and design approach for plain channels in local and coupled local-flexural buckling based on Eurocode 3 [Испытания стоек из холодногнутых профилей швеллерного сечения на действие местной потери устойчивости и на совместное действие местной и изгибной потери устойчивости и рекомендации по их проектированию на основе Еврокода 3]. Thin-Walled Structures, 2014, vol. 81, pp. 108-120.
    9. Emelianov O. V., Shuvalov A. N., Prokic M. On the question of predicting the service life of lattice steel structural elements [К вопросу о прогнозировании срока службы элементов стальных решетчатых конструкций]. Journal of Applied Engineering Science, 2017, vol. 15 (2), pp. 166-172.
    10. Galyamichev A. V. Wind load and its action on facade structures. Stroitel'stvo unikal'nyh zdanij i sooruzhenij, 2017, no. 9(60), pp. 44-57. (In Russian).
    11. Gorohov E. V., Kuznecov S. G., Vasylev V. N., Lozinskij EH. A., Drozdov A. A. Wind load on high-rise building. Metallicheskie konstrukcii, 2011, vol. 17, no. 4, pp. 225-235. (In Russian).
    12. Lalin V. V., Rozin L. A., Kushova D. A. Variational formulation of the plane problem of geometrically nonlinear deformation and stability of elastic rods. Inzhenerno-stroitel'nyj zhurnal, 2013, no. 1(36), pp. 87-96. (In Russian).
    13. Silant'ev A. S. Calculation of strength of oblique sections of flexural reinforced concrete elements using the finite-element method in KE-complexes Ansys and Abaqus. Promyshlennoe i grazhdanskoe stroitel'stvo, 2012, no. 2, pp. 49-52. (In Russian).
    14. Vatin N., Bagautdinov R., Andreev K. Advanced method for semi-rigid joints design [Усовершенствованный метод проектирования полужестких соединений]. Applied Mechanics and Materials, 2015, vol. 725-726, Pp. 710-715.
    15. Ajrumyan E. L., Belyj G. I. Investigation of operation of a steel truss made of cold-formed sections taking into account their local and general stability. Promyshlennoe i grazhdanskoe stroitel'stvo, 2010, no. 5, pp. 41-44. (In Russian).
    16. Tusnina O. A., Danilov A. I. The stiffness of rigid joints of beam with hollow section column [Жесткость рамных узлов сопряжения ригеля с колонной коробчатого сечения]. Инженерно-строительный журнал, 2016, no. 4, pp. 40-51. DOI: 10.5862/MCE.64.4
    17. Nazmeeva T. V. Bearing capacity of compressed continuous and perforated steel members of C-shaped cold-formed profiles. Inzhenerno-stroitel'nyj zhurnal, 2013, no. 5, pp. 44-51. (In Russian).
    18. Trubina D., Abdulaev D., Pichugin E., Rybakov V. Geometric nonlinearity of the thin-walled profile under transverse bending [Геометрическая нелинейность тонкостенного профиля при поперечном изгибе]. Applied Mechanics and Materials, 2014, no. 633-634, pp. 1133-1139.
  • For citation: Nazmeeva T. V., Sivokhin A. D. Stress-Strain State of Attachment Point of Curtain Frame Wall with Cladding on the Basis of Steel Cold-Bent Profile. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2018, no. 10, pp. 41-45. (In Russian).


BACK