Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science


  • BUILDING MATERIALS AND PRODUCTS
  • Account of Features of Cellular Structure when Analyzing the Calculated Thermal Conductivity of Gas-Filled Polymer Materials
  • UDC 691.175.5/.8
    Vladimir V. GURYEV, e-mail: guryev@faufcc.ru
    Federal Centre for Standardization, Standardization and Technical Conformity Assessment in Construction, Orlikov per., 3, str. 1, Moscow 107139, Russian Federation
    Vadim I. NIKITIN, e-mail: nik_ol40@mail.ru
    Pope John Paul II State School of Higher Education, ul. Sidorska, 95/97, Biala Podlaska 21-500, Poland
    Valerie A. KOFANOV, e-mail: valkof@mail.ru
    Brest State Technical University, ul. Moskovskaya, 267, Brest 224017, Republic of Belarus
    Abstract. Based on the analysis of the structure of different types of gas-filled polymers (foams) during operation, it is shown that as a result of hydrothermal degradation, defects arise, leading to its change with the formation of predominantly communicating cells, which makes it possible to attribute them to structures with interpenetrating geometrically equal components. When modeling such a structure, an adequate model with an ordered structure consisting of identical elementary cells was used. The penetration of the heat flux through the unit cell is described using one of the possible methods of the theory of generalized conductivity and, as an example, a dependence is established to determine the effective thermal conductivity of the material. A number of dependencies are considered for determining the effective thermal conductivity of cellular structures with interpenetrating components and with isolated inclusions. An experimental check of these dependencies shows that the experimental data are most accurately reproduced by dependences for structures with interpenetrating components (open cellular structure). The best of them are recommended for determining the thermal conductivity both of dry and wet foams.
    Key words: gas-filled polymer materials, cellular structure, calculated thermal conductivity, interpenetrating components, elementary cell.
  • REFERENCES
    1. Лыков А. В. Тепломассообмен. М. : Энергия, 1971. 560 с.
    1. Lykov A. V. Teplomassoobmen [Heat and mass transfer]. Moscow, Energiya Publ., 1971. 560 p. (In Russian).
    2. Collishaw P. G., Evans J. R. G. An assessment of expressions for the apparent thermal conductivity of cellular materials [Оценка выражений для очевидной теплопроводности ячеистых материалов]. Journal of Materials Science, 1994, vol. 29, pp. 486-498.
    3. Гурьев В. В., Жолудов В. С., Петров-Денисов В. Г. Тепловая изоляция в промышленности. Теория и расчет. М. : Стройиздат, 2003. 416 с.
    3. Gur'ev V. V., Zholudov V. S., Petrov-Denisov V. G. Teplovaya izolyatsiya v promyshlennosti. Teoriya i raschet [Thermal insulation in industry. Theory and calculation]. Moscow, Stroyizdat Publ., 2003. 416 p. (In Russian).
    4. Shi M., Li X., Chen Y. Determination of effective thermal conductivity for polyurethane foam by use of fractal method [Определение эффективной теплопроводности пенополиуретана с использованием фрактального метода]. Science in China Series E. Technological Sciences, 2006, vol. 49, no 4, рp. 468-475. (In Russian).
    5. Дульнев Г. Н., Новиков В. В. Процессы переноса в неоднородных средах. Л. : Энергоатомиздат. Ленинградское отд-е, 1991. 248 с.
    5. Dul'nev G. N., Novikov V. V. Protsessy perenosa v neodnorodnykh sredakh [Transport processes in inhomogeneous media]. Leningrad, Energoatomizdat Publ., 1991. 248 p. (In Russian).
    6. Kan A., Han H. Effective thermal conductivity of open cell polyurethane foam based on fractal theory [Эффективная теплопроводность открытой ячейки пенополиуретана на основе фрактальной теории]. Available at: https://www.hindawi.com/journals/amse/2013/125267 (accessed 20.08.2017).
    7. Baillis D., Coquard R., Cunsolo S. Effective conductivity of Voronoi's closed- and open-cell foams: analytical laws and numerical results [Эффективная проводимость закрытых и открытых ячеек Вороного: аналитические законы и численные результаты]. Journal of Materials Science, 2017, vol. 52, no 19, pp. 11146-11167.
    8. Hahn H.T. Hydrothermal damage and graphite/epoxy laminates [Гидротермальные повреждения и графитовые / эпоксидные слоистые материалы]. Journal of Engineering Materials and Technology, 1987, vol. 109, no. 1, рp. 3-11.
    9. Zarr R. R., Nguyen T. Effects of humidity and elevated temperature on the density and thermal conductivity of a rigid polyisocyanurate foam [Влияние влажности и повышенной температуры на плотность и теплопроводность жесткого пенополиизоцианурата]. Journal of Cellular Plastics, 1994, vol. 30, pp. 422-430.
    10. Журков С. Н., Куксенко В. С., Слуцкер А. И. Микромеханика разрушения полимеров // Проблемы прочности. 1971. № 2. С. 45-50.
    10. Zhurkov S. N., Kuksenko V. S., Slutsker A. I. Micromechanics of polymer destruction. Problemy prochnosti, 1971, no. 2, pp. 45-50. (In Russian).
    11. Nikitin W., Lapko A. Prognozowanie spadku wlasciwosci termoizolacyjnych ocieplenia warstwowych scian oslonowych [Прогнозирование снижения теплоизоляционных свойств изоляции сэндвич-панелей]. Awarie Budowlane: materialy XIX konferencja naukowo-techniczna, Szczecin-Miedzyzdroje, 19-22 maja, 1999. Szczecin-Miedzyzdroje, 1999. T. 1. Pp. 415-422.
    12. Оделевский В. И. Расчет обобщенной проводимости гетерогенных систем // Журнал технической физики. 1951. Т. 21. Вып. 6. С. 667-685.
    12. Odelevskiy V. I. Calculation of the generalized conductivity of heterogeneous systems. Zhurnal tekhnicheskoy fiziki, 1951, vol. 21, Iss. 6, pp. 667-685. (In Russian).
    13. Dominguez-Munoz F., Anderson B., Cejudo-Lopez J. M., Carrillo-Andres A. Uncertainty in the thermal conductivity of insulation materials [Неопределенность в теплопроводности изоляционных материалов]. Building Simulation : materials XI International IBPSA Conference, Glasgow, July 27-30 2009, Pp. 1008-1013.
  • For citation: Guryev V. V., Nikitin V. I., Kofanov V. A. Account of Features of Cellular Structure when Analyzing the Calculated Thermal Conductivity of Gas-Filled Polymer Materials. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2018, no. 9, pp. 98-104.


BACK