BACK
- INFORMATION SYSTEMS IN CONSTRUCTION
- Technology and Organization of Additive Construction
- UDC 69.001.5
Andrey Ð. PUSTOVGAR, e-mail: PustovgarAP@mgsu.ru
Aleksey Î. ADAMTSEVICH, e-mail: AdamtsevichAO@mgsu.ru
Andrey À. VOLKOV, e-mail: Volkov@mgsu.ru
Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
Abstract. Additive technologies, also known as 3D printing, use the principle of stage-by-stage (layer-by-layer) manufacture of physical objects based on their digital model. The application of additive technologies began with the aerospace industry, but, developing with time, they found application in other branches of science and technology. Today, this technology is increasingly used in industrial and civil construction. At the same time, the rate of development of additive technologies in construction in recent years makes it possible to forecast the possibility of relacing in a certain perspective the usual technological setup characteristic for modern construction industry and transition to the principles of additive construction based on a high level of automation and robotization of construction processes. Key trends in the development of technological and organizational aspects of additive construction are systematized and analyzed in this article with due regard for the prospects of using the 3D-printing technology in construction.
Key words: additive technologies, 3D printing, additive construction, building materials, automation of construction, construction 3D printers, systems engineering of construction, cybernetics of construction systems, organizational and technological reliability, cyber-physical construction system. - REFERENCES
1. Hager I., Golonka A., Putanowicz R. 3D Printing of buildings and building components as the future of sustainable construction? [3D-ïå÷àòü çäàíèé è ñòðîèòåëüíûõ êîìïîíåíòîâ - ýòî áóäóùåå óñòîé÷èâîãî ñòðîèòåëüñòâà?]. Procedia Engineering, 2016, vol. 151, pp. 292-299.
2. Williams R. L., Albus J. S., Bostelman R. V. Self-contained automated construction deposition system [Çàìêíóòàÿ àâòîíîìíàÿ ñèñòåìà îñàæäåíèÿ çäàíèé]. Automation in Construction, 2004, vol. 13, iss. 3, pp. 393-407.
3. Le T. T., Austin S. A., Lim S., et al. Mix design and fresh properties for high-performance printing concrete [Ñîñòàâû ñìåñè è íîâûå ñâîéñòâà âûñîêîòåõíîëîãè÷íîãî áåòîíà äëÿ 3D-ïðèíòèíãà]. Materials and Structures, 2012, vol. 45, iss. 8, pp. 1221-1232.
4. Liiv J., Teppand T., Rikmann E., Tenno T. Novel ecosustainable peat and oil shale ash-based 3D-printable composite material [Íîâûé ýêîñòîéêèé ìàòåðèàë äëÿ 3D-ïå÷àòè íà îñíîâå òîðôà è ñëàíöåâîé çîëû]. Sustainable Materials and Technologies, 2018, vol. 17.
5. Wangler T., Reiter L., Hack N., et al. Digital concrete: opportunities and challenges [Öèôðîâîé áåòîí: âîçìîæíîñòè è ïðîáëåìû]. RILEM Technical Letters, 2016, vol. 1, pp. 67-75.
6. Ma G., Li Z., Wang L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing [Ïå÷àòíûå ñâîéñòâà öåìåíòíîãî ìàòåðèàëà, ñîäåðæàùåãî ìåäíûå âêëþ÷åíèÿ äëÿ ýêñòðóçèîííîé 3D-ïå÷àòè]. Construction and Building Materials, 2018, vol. 162, pp. 613-627.
7. Bandyopadhyay A., Heer B. Additive manufacturing of multi-material structures [Àääèòèâíîå ïðîèçâîäñòâî ìíîãîñëîéíûõ êîíñòðóêöèé]. Materials Science and Engineering, 2018, vol. 129, pp. 1-16.
8. Yossef, Mostafa, Chen, An. Applicability and limitations of 3D printing for civil structures [Ïðèìåíèìîñòü è îãðàíè÷åíèÿ 3D-ïå÷àòè äëÿ ãðàæäàíñêèõ êîíñòðóêöèé]. Proc. of the 2015 Conference on Autonomous and Robotic Construction of Infrastructure, 2015. Available at: https://www.researchgate.net/publication/277665549/download (accessed 20.09.2018).
9. Baumers M., Dickens P., Tuck C., Hague R. The cost of additive manufacturing: machine productivity, economies of scale and technology-push [Ñòîèìîñòü àääèòèâíîãî ïðîèçâîäñòâà: ìàøèííàÿ ïðîèçâîäèòåëüíîñòü, ýêîíîìèÿ çà ñ÷åò ìàñøòàáèðîâàíèÿ è òåõíîëîãè÷åñêîãî ðàçâèòèÿ]. Technological Forecasting and Social Change, 2016, vol. 102, pp. 193-201.
10. Kianian B., Tavassoli S., Larsson T. C. The role of additive manufacturing technology in job creation: an exploratory case study of suppliers of additive manufacturing in Sweden [Ðîëü àääèòèâíûõ òåõíîëîãèé â ñîçäàíèè ðàáî÷èõ ìåñò: ïîèñêîâîå èññëåäîâàíèå ïîñòàâùèêîâ àääèòèâíîãî îáîðóäîâàíèÿ â Øâåöèè]. Procedia CIRP, 2015, vol. 26, pp. 93-98.
11. De Soto B. G., Agusti-Juan I., Hunhevicz J., et al. Productivity of digital fabrication in construction: Cost and time analysis of a robotically built wall [Àíàëèç çàòðàò ñðåäñòâ è âðåìåíè íà ðîáîòèçèðîâàííîå ñòðîèòåëüñòâî ñòåí]. Automation in Construction, 2018, vol. 92, pp. 297-311.
12. Grahov V. P., Mohnachev S. A., Borozdov O. V. The influence of the development of 3D technologies on the construction economics. Fundamental'nye issledovaniya, 2014, no. 11-12, pp. 2673-2676. (In Russian).
13. Labonnote N., Ronnquist A., Manum B., Ruther P. Additive construction: State-of-the-art, challenges and opportunities [Àääèòèâíîå ñòðîèòåëüñòâî: ñîñòîÿíèå äåë, ïðîáëåìû è âîçìîæíîñòè]. Automation in Construction, 2016, vol. 72, pp. 347-366.
14. Available at: http://apis-cor.com/en/about/news/first-house (accessed 2.09.2018).
15. Available at: http://news.nus.edu.sg/press-releases/construction-3D-printing (accessed 2.09.2018).
16. Kovalenko M. 3D printing: new opportunities in construction. Proektnye i izyskatel'nye raboty v stroitel'stve, 2017, no. 2, pp. 42-47. (In Russian).
17. Gebler M., Uiterkamp A. J. M. S., Visser C. A global sustainability perspective on 3D printing technologies [Ãëîáàëüíàÿ ïåðñïåêòèâà óñòîé÷èâîñòè òåõíîëîãèé 3D-ïå÷àòè]. Energy Policy, 2014, vol. 74, pp. 158-167.
18. Available at: https://3dprint.com/131629/uae-3d-printed-homes/ (accessed 2.09.2018).
19. Available at: http://www.gov.cn/xinwen/2017-12/14/content_5246754.htm (accessed 2.09.2018).
20. Available at: https://am-uk.org/project/additive-manufacturing-uk-national-strategy-2018-25/ (accessed 2.09.2018).
21. Available at: https://dubaifutureaccelerators.com/en/program/ (accessed 2.09.2018).
22. Buswell R. A., Thorpe A., Soar R. C., Gibb A. G. F. Design, data and process issues for mega-scale rapid manufacturing machines used for construction [Âîïðîñû ïðîåêòèðîâàíèÿ, äàííûõ è ïðîöåññîâ ïðè óñêîðåííîì ïðîèçâîäñòâå êðóïíîìàñøòàáíûõ ìàøèí äëÿ ñòðîèòåëüñòâà]. Automation in Construction, 2008, vol. 17, iss. 8, pp. 923-929.
23. Lim S., Buswell R. A., Le T. T., et al. Developments in construction-scale additive manufacturing processes [Ðàçâèòèå àääèòèâíûõ òåõíîëîãèé â ñòðîèòåëüñòâå]. Automation in Construction, 2012, vol. 21, pp. 262-268.
24. Ghaffar S. H., Corker J., Fan M. Additive manufacturing technology and its implementation in construction as an eco-innovative solution [Òåõíîëîãèÿ àääèòèâíîãî ïðîèçâîäñòâà è åãî ðåàëèçàöèÿ â ñòðîèòåëüñòâå êàê ýêî-èííîâàöèîííîå ðåøåíèå]. Automation in Construction, 2018, vol. 93, pp. 1-11.
25. Cesaretti G., Dini E., De Kestelier X., et al. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology [Êîìïîíåíòû çäàíèÿ äëÿ ôîðïîñòà íà ëóííîé ïîâåðõíîñòè ñ èñïîëüçîâàíèåì íîâîé òåõíîëîãèè 3D-ïå÷àòè]. Acta Astronautica, 2014, vol. 93, pp. 430-450.
26. Kading B., Straub J. Utilizing in-situ resources and 3D printing structures for a manned Mars mission [Èñïîëüçîâàíèå ìåñòíûõ ìàòåðèàëîâ è òåõíîëîãèè 3Ä-ïå÷àòè â ðàìêàõ ïèëîòèðóåìîé ìèññèè íà Ìàðñ]. Acta Astronautica, 2015, vol. 107, pp. 317-326.
27. Available at: http://apis-cor.com/en/about/blog/apiscor-3d-printing-on-mars (accessed 2.09.2018).
28. Buswell R. A., Soar R. C., Gibb A. G. F., Thorpe A. Freeform construction: mega-scale rapid manufacturing for construction [Êîíñòðóèðîâàíèå ñâîáîäíîé ôîðìû: ìåãàìàñøòàáíîå áûñòðîå ïðîèçâîäñòâî äëÿ ñòðîèòåëüñòâà]. Automation in Construction, 2007, vol. 16, iss. 2, pp. 224-231.
29. Duballet R., Baverel O., Dirrenberger J. Classification of building systems for concrete 3D printing [Êëàññèôèêàöèÿ ñèñòåì äëÿ ñòðîèòåëüíîé 3D-ïå÷àòè áåòîíîì]. Automation in Construction, 2017, vol. 83, pp. 247-258.
30. Kazemian A., Yuan X., Cochran E., Khoshnevis B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture [Öåìåíòíûå ìàòåðèàëû äëÿ ñòðîèòåëüíîé 3D-ïå÷àòè: ëàáîðàòîðíûå èñïûòàíèÿ ñâåæåé ïå÷àòíîé ñìåñè]. Construction and Building Materials, 2017, vol. 145, pp. 639-647.
31. Mechtcherine V., Nerella V. N., Kasten K. Testing pumpability of concrete using Sliding Pipe Rheometer [Èñïûòàíèå ïðîêà÷èâàåìîñòè áåòîíà ñ èñïîëüçîâàíèåì ðåîìåòðà ñ ðàçäâèæíîé òðóáîé]. Construction and Building Materials, 2014, vol. 53, 28, pp. 312-323.
32. Adamtsevich A. O., Pustovgar A. P. Optimization of process organization in monolithic construction. Vestnik MGSU, 2013, no. 10, pp. 242-248. (In Russian).
33. Gusakov A. A., Ginzburg A. V., Veremeenko S. A., et al. Organizacionno-tekhnologicheskaya nadezhnost' stroitel'stva [Organizational and technological reliability of construction]. Moscow, SvR-Argus Publ., 1994. 472 p. (In Russian).
34. Gusakov A. A. Organizacionno-tekhnologicheskaya nadezhnost' stroitel'nogo proizvodstva v usloviyah avtomatizirovannyh sistem proektirovaniya [Organizational and technological reliability of construction production in the conditions of automated design systems]. Moscow, Strojizdat Publ., 1974. 252 p. (In Russian).
35. Gusakov A. A. Sistemotekhnika stroitel'stva [Systems engineering in construction]. Moscow, Strojizdat Publ., 1993. 368 p. (In Russian).
36. Volkov A. A. Cybernetics of construction systems. Cyber-physical construction systems. Promyshlennoe i grazhdanskoe stroitel'stvo, 2017, no. 9, pp. 4-7. (In Russian). - For citation: Pustovgar A. Ð., Adamtsevich A. Î., Volkov A. À. Technology and Organization of Additive Construction. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2018, no. 9, pp. 12-20.
BACK