Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • INFORMATION SYSTEMS IN CONSTRUCTION
  • Technology and Organization of Additive Construction
  • UDC 69.001.5
    Andrey Р. PUSTOVGAR, e-mail: PustovgarAP@mgsu.ru
    Aleksey О. ADAMTSEVICH, e-mail: AdamtsevichAO@mgsu.ru
    Andrey А. VOLKOV, e-mail: Volkov@mgsu.ru
    Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    Abstract. Additive technologies, also known as 3D printing, use the principle of stage-by-stage (layer-by-layer) manufacture of physical objects based on their digital model. The application of additive technologies began with the aerospace industry, but, developing with time, they found application in other branches of science and technology. Today, this technology is increasingly used in industrial and civil construction. At the same time, the rate of development of additive technologies in construction in recent years makes it possible to forecast the possibility of relacing in a certain perspective the usual technological setup characteristic for modern construction industry and transition to the principles of additive construction based on a high level of automation and robotization of construction processes. Key trends in the development of technological and organizational aspects of additive construction are systematized and analyzed in this article with due regard for the prospects of using the 3D-printing technology in construction.
    Key words: additive technologies, 3D printing, additive construction, building materials, automation of construction, construction 3D printers, systems engineering of construction, cybernetics of construction systems, organizational and technological reliability, cyber-physical construction system.
  • REFERENCES
    1. Hager I., Golonka A., Putanowicz R. 3D Printing of buildings and building components as the future of sustainable construction? [3D-печать зданий и строительных компонентов - это будущее устойчивого строительства?]. Procedia Engineering, 2016, vol. 151, pp. 292-299.
    2. Williams R. L., Albus J. S., Bostelman R. V. Self-contained automated construction deposition system [Замкнутая автономная система осаждения зданий]. Automation in Construction, 2004, vol. 13, iss. 3, pp. 393-407.
    3. Le T. T., Austin S. A., Lim S., et al. Mix design and fresh properties for high-performance printing concrete [Составы смеси и новые свойства высокотехнологичного бетона для 3D-принтинга]. Materials and Structures, 2012, vol. 45, iss. 8, pp. 1221-1232.
    4. Liiv J., Teppand T., Rikmann E., Tenno T. Novel ecosustainable peat and oil shale ash-based 3D-printable composite material [Новый экостойкий материал для 3D-печати на основе торфа и сланцевой золы]. Sustainable Materials and Technologies, 2018, vol. 17.
    5. Wangler T., Reiter L., Hack N., et al. Digital concrete: opportunities and challenges [Цифровой бетон: возможности и проблемы]. RILEM Technical Letters, 2016, vol. 1, pp. 67-75.
    6. Ma G., Li Z., Wang L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing [Печатные свойства цементного материала, содержащего медные включения для экструзионной 3D-печати]. Construction and Building Materials, 2018, vol. 162, pp. 613-627.
    7. Bandyopadhyay A., Heer B. Additive manufacturing of multi-material structures [Аддитивное производство многослойных конструкций]. Materials Science and Engineering, 2018, vol. 129, pp. 1-16.
    8. Yossef, Mostafa, Chen, An. Applicability and limitations of 3D printing for civil structures [Применимость и ограничения 3D-печати для гражданских конструкций]. Proc. of the 2015 Conference on Autonomous and Robotic Construction of Infrastructure, 2015. Available at: https://www.researchgate.net/publication/277665549/download (accessed 20.09.2018).
    9. Baumers M., Dickens P., Tuck C., Hague R. The cost of additive manufacturing: machine productivity, economies of scale and technology-push [Стоимость аддитивного производства: машинная производительность, экономия за счет масштабирования и технологического развития]. Technological Forecasting and Social Change, 2016, vol. 102, pp. 193-201.
    10. Kianian B., Tavassoli S., Larsson T. C. The role of additive manufacturing technology in job creation: an exploratory case study of suppliers of additive manufacturing in Sweden [Роль аддитивных технологий в создании рабочих мест: поисковое исследование поставщиков аддитивного оборудования в Швеции]. Procedia CIRP, 2015, vol. 26, pp. 93-98.
    11. De Soto B. G., Agusti-Juan I., Hunhevicz J., et al. Productivity of digital fabrication in construction: Cost and time analysis of a robotically built wall [Анализ затрат средств и времени на роботизированное строительство стен]. Automation in Construction, 2018, vol. 92, pp. 297-311.
    12. Grahov V. P., Mohnachev S. A., Borozdov O. V. The influence of the development of 3D technologies on the construction economics. Fundamental'nye issledovaniya, 2014, no. 11-12, pp. 2673-2676. (In Russian).
    13. Labonnote N., Ronnquist A., Manum B., Ruther P. Additive construction: State-of-the-art, challenges and opportunities [Аддитивное строительство: состояние дел, проблемы и возможности]. Automation in Construction, 2016, vol. 72, pp. 347-366.
    14. Available at: http://apis-cor.com/en/about/news/first-house (accessed 2.09.2018).
    15. Available at: http://news.nus.edu.sg/press-releases/construction-3D-printing (accessed 2.09.2018).
    16. Kovalenko M. 3D printing: new opportunities in construction. Proektnye i izyskatel'nye raboty v stroitel'stve, 2017, no. 2, pp. 42-47. (In Russian).
    17. Gebler M., Uiterkamp A. J. M. S., Visser C. A global sustainability perspective on 3D printing technologies [Глобальная перспектива устойчивости технологий 3D-печати]. Energy Policy, 2014, vol. 74, pp. 158-167.
    18. Available at: https://3dprint.com/131629/uae-3d-printed-homes/ (accessed 2.09.2018).
    19. Available at: http://www.gov.cn/xinwen/2017-12/14/content_5246754.htm (accessed 2.09.2018).
    20. Available at: https://am-uk.org/project/additive-manufacturing-uk-national-strategy-2018-25/ (accessed 2.09.2018).
    21. Available at: https://dubaifutureaccelerators.com/en/program/ (accessed 2.09.2018).
    22. Buswell R. A., Thorpe A., Soar R. C., Gibb A. G. F. Design, data and process issues for mega-scale rapid manufacturing machines used for construction [Вопросы проектирования, данных и процессов при ускоренном производстве крупномасштабных машин для строительства]. Automation in Construction, 2008, vol. 17, iss. 8, pp. 923-929.
    23. Lim S., Buswell R. A., Le T. T., et al. Developments in construction-scale additive manufacturing processes [Развитие аддитивных технологий в строительстве]. Automation in Construction, 2012, vol. 21, pp. 262-268.
    24. Ghaffar S. H., Corker J., Fan M. Additive manufacturing technology and its implementation in construction as an eco-innovative solution [Технология аддитивного производства и его реализация в строительстве как эко-инновационное решение]. Automation in Construction, 2018, vol. 93, pp. 1-11.
    25. Cesaretti G., Dini E., De Kestelier X., et al. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology [Компоненты здания для форпоста на лунной поверхности с использованием новой технологии 3D-печати]. Acta Astronautica, 2014, vol. 93, pp. 430-450.
    26. Kading B., Straub J. Utilizing in-situ resources and 3D printing structures for a manned Mars mission [Использование местных материалов и технологии 3Д-печати в рамках пилотируемой миссии на Марс]. Acta Astronautica, 2015, vol. 107, pp. 317-326.
    27. Available at: http://apis-cor.com/en/about/blog/apiscor-3d-printing-on-mars (accessed 2.09.2018).
    28. Buswell R. A., Soar R. C., Gibb A. G. F., Thorpe A. Freeform construction: mega-scale rapid manufacturing for construction [Конструирование свободной формы: мегамасштабное быстрое производство для строительства]. Automation in Construction, 2007, vol. 16, iss. 2, pp. 224-231.
    29. Duballet R., Baverel O., Dirrenberger J. Classification of building systems for concrete 3D printing [Классификация систем для строительной 3D-печати бетоном]. Automation in Construction, 2017, vol. 83, pp. 247-258.
    30. Kazemian A., Yuan X., Cochran E., Khoshnevis B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture [Цементные материалы для строительной 3D-печати: лабораторные испытания свежей печатной смеси]. Construction and Building Materials, 2017, vol. 145, pp. 639-647.
    31. Mechtcherine V., Nerella V. N., Kasten K. Testing pumpability of concrete using Sliding Pipe Rheometer [Испытание прокачиваемости бетона с использованием реометра с раздвижной трубой]. Construction and Building Materials, 2014, vol. 53, 28, pp. 312-323.
    32. Adamtsevich A. O., Pustovgar A. P. Optimization of process organization in monolithic construction. Vestnik MGSU, 2013, no. 10, pp. 242-248. (In Russian).
    33. Gusakov A. A., Ginzburg A. V., Veremeenko S. A., et al. Organizacionno-tekhnologicheskaya nadezhnost' stroitel'stva [Organizational and technological reliability of construction]. Moscow, SvR-Argus Publ., 1994. 472 p. (In Russian).
    34. Gusakov A. A. Organizacionno-tekhnologicheskaya nadezhnost' stroitel'nogo proizvodstva v usloviyah avtomatizirovannyh sistem proektirovaniya [Organizational and technological reliability of construction production in the conditions of automated design systems]. Moscow, Strojizdat Publ., 1974. 252 p. (In Russian).
    35. Gusakov A. A. Sistemotekhnika stroitel'stva [Systems engineering in construction]. Moscow, Strojizdat Publ., 1993. 368 p. (In Russian).
    36. Volkov A. A. Cybernetics of construction systems. Cyber-physical construction systems. Promyshlennoe i grazhdanskoe stroitel'stvo, 2017, no. 9, pp. 4-7. (In Russian).
  • For citation: Pustovgar A. Р., Adamtsevich A. О., Volkov A. А. Technology and Organization of Additive Construction. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2018, no. 9, pp. 12-20.


BACK