Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science


  • BUILDING MATERIALS AND PRODUCTS
  • Models of Polydisperse Systems: Evaluation Criteria and Analysis of Performance Indicators
  • UDC 691:51-74
    Boris V. GUSEV, e-mail: info-rae@mail.ru
    Russian Academy of Engineering, Gazetnyy per., 9, str. 4, Moscow 125009, Russian Federation
    Evgeniy V. KOROLEV, e-mail: KorolevEV@mgsu.ru
    Anna N. GRISHINA, e-mail: GrishinaAN@mgsu.ru
    Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    Abstract. Main models of polydisperse systems are discussed in this article. These models are classified into "non-structural" and "structural" according to the configuration of the particle arrangement. The interrelation between basic parameters of polydisperse systems and their strength is analyzed. A method for calculating the value of the configuration entropy is proposed, as well as an invariant filling model (the "Scaling" filling model) and a model based on the use of fundamental constants: the density of the hexagonal packing, the golden section number, Fibonacci numbers and percolation thresholds of the percolation theory. It is concluded that new models of polydisperse systems in terms of efficiency have significant advantages in comparison with traditional ones (Fuller, Hummel, Andreasan, Funk-Dinger, and others). They serve as the basis for the design of not only the grain part (a mixture of fillers) of composite materials, but also the compositions of composite binding systems on the basis of various binders.
    Key words: models of polydisperse systems, fractal dimension, density of packing, composite materials
  • REFERENCES
    1. Ur'ev N. B. Fiziko-khimicheskaya dinamika dispersnykh sistem i materialov. Fundamental'nye aspekty tekhnologicheskie prilozheniya [Physico-chemical dynamics of disperse systems and materials. Fundamental aspects, technological applications]. Dolgoprudnyy, Intellekt Publ., 2013. 232 p. (In Russian).
    2. Gusev B. V., Minsadrov I. N., Miroevskij P. V., Trutnev N. S. Investigation of nanostructure formation in fine-grained concretes modified by nanosilica. Nanotehnologii v stroitel'stve: nauchnyj internet-zhurnal, 2009, no. 3, pp. 8-14. (In Russian).
    3. Gusev B. V. Development of nano-science and nano-technologies. Promyshlennoe i grazhdanskoe stroitel'stvo, 2007, no. 4, pp. 45-46. (In Russian).
    4. Gusev B. V. Nanostructuring of concrete materials. Promyshlennoe i grazhdanskoe stroitel'stvo, 2016, no. 1, pp. 7-10. (In Russian).
    5. Patent RF 2412919. Nanovjazhushhee [Nanomodified binder]. Gusev B. V., Minsadrov I. N., Selivanov S. N. (In Russian).
    6. Sobolev K., Amirjanov A. Application of genetic algorithm for modeling of dense packing of concrete aggregates. Construction and Building Materials, 2010, no. 24, pp. 1449-1455.
    7. Sobolev K., Amirjanov A. The simulation of particulate materials packing using a particle suspension model. Advanced Powder Technologi, 2007, vol. 18, no. 3, pp. 261-271.
    8. Sobolev K., Amirjanov A. A simulation model of the dense packing of particulate materials. Advanced Powder Technologi, 2004, vol. 15, no. 3, pp. 365- 376.
    9. Fiziko-khimicheskaya mekhanika dispersnykh struktur [Physico-chemical mechanics of disperse structures]. Red. P. A. Rebinder. Moscow, Nauka Publ., 1966. 400 p. (In Russian).
    10. Bobryshev A. N., Erofeev V. T., Kozomazov V. N. Fizika i sinergetika dispersno-uporyadochennykh kondensirovannykh kompozitnykh sistem [Physics and synergetics of dispersed-ordered condensed composite systems]. St. Petersburg, Nauka Publ., 2012. 476 p. (In Russian).
    11. Belov V. V., Obraztsov I. V. Komp'yuternoe modelirovanie i optimizirovanie sostavov stroitel'nykh kompozitov [Numerical modeling and optimization of building composites]. Tver', TGTU Publ., 2014. 124 p. (In Russian).
    12. Paytgen Kh. O., Rikhter P. Kh. Krasota fraktalov. Obrazy kompleksnykh dinamicheskikh sistem [The beauty of fractals. Representations of complex dynamic systems]. Moscow, Mir Publ., 1993. 176 p. (In Russian).
    13. Il'in V. A., Sadovnichiy V. A., Sendov Bl. Kh. Matematicheskiy analiz. Prodolzhenie kursa [Calculus. Completion]. Red. A. I. Tikhonov. Moscow, MGU Publ., 1987. 358 p. (In Russian).
    14. Korolev E. V., Grishina A. N., Pustovgar A. P. Role of surface tension in structure formation of materials. Value, calculation and application. Stroitel'nye materialy, 2017, no. 1-2, pp. 104-109. (In Russian).
    15. Gao H., Ji B., Jдger I. l., et al. Materials become insensitive to flaws at nanoscale: lessons from nature. Proceedings of the National Academy of Science, 2003, vol. 100, no. 10, pp. 5597-5600.
    16. Feder E. Fraktaly [Fractals]. Moscow, Mir Publ., 1991. 254 p. (In Russian).
    17. Pridatko Yu. M., Korolev L. V., Gotovtsev V. M. Modeling of dense packing of particles in composite. Vestnik Saratovskogo gos. tekhn. un-ta, 2011, no. 4(62), pp. 96-100. (In Russian).
    18. Vasyutinskiy N. A. Zolotaya proportsiya [Gold section]. Moscow, Molodaya gvardiya Publ., 1990. 238 p. (In Russian).
    19. Vorob'ev N. N. Chisla Fibonachchi [Fibonacci numbers]. Moscow, Nauka Publ., 1984. 144 p. (In Russian).
    20. Solomatov V. I., Takhirov M. K., Takher Shakh Md. Intensivnaya tekhnologiya betonov [Intensive Concrete Technology]. Moscow, Stroyizdat Publ., 1989. 264 p. (In Russian).
    21. Korolev E. V., Bazhenov Yu. M., Al'bakasov A. I. Radiatsionno-zashchitnye i khimicheski stoykie sernye stroitel'nye materialy [Radiation-protective and chemically resistant sulfur building materials]. Penza- Orenburg, IPK OGU Publ., 2010. 364 p. (In Russian).
  • For citation: Gusev B. V., Korolev E. V., Grishina A. N. Models of Polydisperse Systems: Evaluation Criteria and Analysis of Performance Indicators. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2018, no. 8, pp. 31-39.


BACK