Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science


  • BUILDING STRUCTURES, BUILDINGS AND FACILITIES
  • Experimental and Numerical Analysis Stress-Strain State of Tensile Membrane Hypar Structures
  • сдй 624.072.1
    Alexander M. IBRAGIMOV, e-mail: igasu_alex@mail.ru
    Alexey A. KUSTOV, e-mail: alexeykustov@outlook.com
    Nikolay A. MOKIN, e-mail: mokiavelli@mail.ru
    Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    Abstract. The results of the test of a building structure made of technical coated fabric with an asymmetric uniformly distributed load located on half of the structure are considered. The aim of the study was to verify the scientific hypothesis that the account of shear stiffness makes it possible to fully and reliably determine the stress-strain state and predict the behavior of building structures made of technical coated fabrics. In the course of the work, the approbation of the adequate use of a non-linear orthotropic model of behavior of technical coated fabrics under loading, an orthotropic elastic-plastic model by the Hill's yield criterion, in numerical calculations in the program ANSYS was performed. A numerical study imitating the test of the structure in the PC "ANSYS" was conducted. A comparison of these numerical calculations and results of structure testing shows the possibility of using a linear and nonlinear orthotropic model of the behavior of a material under load in numerical calculations of similar structures. When analyzing the results of numerical experiments, it is established that shear stresses make a significant contribution to the stress-strain state of building structures made of technical coated fabrics.
    Key words: building structures made of technical coated fabrics, experiment, numerical study, orthotropic shells, ANSYS.
  • REFERENCES
    1. Mikhaylov V. V., Chesnokov V. A. Legkie effektivnye konstruktsii pokrytiya zdaniy i sooruzheniy. Sistemy iz tosov, tentovykh materialov i polimernykh plenok [Easy effective coating designs of buildings and structures. Systems of cables, tent materials and polymer films]. Germany, LAP Lambert Academic Publ., 2013. 128 p. (In Russian).
    2. Udler E. M. Some aspects of tent terminology. Izvestiya KGASU, 2017, no. 4, pp. 196-203. (In Russian).
    3. Udler E. M., Kudryavtseva V. I. The specifics of the manufacture and installation of tent, circular tent of the shells of negative Gaussian curvature, is presented in the form of a set of saddle surfaces. Sbornik nauchnykh trudov mezhdunarodnoy nauchno- teoreticheskoy konferentsii "Sovremennye issledovaniya osnovnyh napravlenij gumanitarnyh i estestvennyh nauk" [Proc. Conferences "Modern research of the main directions of humanities and natural sciences"], Kazan, Kazanskij kooperativnyj institut (filial) ANO OVO CS RF "Rossijskij universitet kooperacii" Publ., 2017, pp. 214-217. (In Russian).
    4. Ambroziak A., K_osowski P. Polyester sail technical woven fabric behaviour under uniaxial and biaxial tensile tests [оНБЕДЕМХЕ РЕУМХВЕЯЙНИ ОНКХЩТХПМНИ ОЮПСЯМНИ РЙЮМХ ОПХ НДМННЯМШУ Х ДБСУНЯМШУ ХЯОШРЮМХЪУ МЮ ПЮГПШБ]. J. Theor. Appl. Mech., 2018, no. 56, p. 227.
    5. Ambroziak A., Klosowski P. Mechanical properties of polyvinyl chloride-coated fabric under cyclic tests [лЕУЮМХВЕЯЙХЕ ЯБНИЯРБЮ РЙЮМЕИ Я ОНКХБХМХКУКНПХДМШЛ ОНЙПШРХЕЛ Б ХЯОШРЮМХЪУ ОПХ ЖХЙКХВЕЯЙХУ МЮЦПСГЙЮУ]. J. Reinf. Plast. Compos., 2014, vol. 33, no. 3, pp. 225-234.
    6. Colman A. G., et al. Shear behaviour of architectural fabrics subjected to biaxial tensile loads [яДБХЦНБЮЪ ФЕЯРЙНЯРЭ ЮПУХРЕЙРСПМШУ РЙЮМЕИ ОПХ ДБСУНЯМНЛ ПЮЯРЪФЕМХХ]. Compos. Part A, Appl. Sci. Manuf., 2014, vol. 66, pp. 163-174.
    7. Krivoshapko S. N. Pneumatic structures and structures. Stroitel'naya mekhanika inzhenernykh konstruktsiy i sooruzheniy, 2015, no. 3, pp. 45-53. (In Russian).
    8. яЙНОЕМЙН б. ю. рЕМРНБЮЪ ЮПУХРЕЙРСПЮ: БВЕПЮ, ЯЕЦНДМЪ, ГЮБРПЮ // юЙЮДЕЛХВЕЯЙХИ БЕЯРМХЙ сПЮКмххОПНЕЙР пююям. 2010. ╧ 1. я. 30-36.
    8. Skopenko V. A. Tent architecture: yesterday, today, tomorrow. Akademicheskiy vestnik UralNIIproekt RAASN, 2010, no. 1, pp. 30-36. (In Russian).
    9. Sysoeva E. V., Trushin S. I. Evolution of large-span tent structures from ancient times to the XXI century. Nauchnoe obozrenie, 2016, no. 2, pp. 14-20. (In Russian).
    10. ASCE/SEI55-16. Tensile membrane structures [лЕЛАПЮММШЕ ЙНМЯРПСЙЖХХ]. ASCE standard. USA. American Society of Civil Engineers, 2016. 63 p.
    11. Llorens J. Fabric Structures in Architecture [йНМЯРПСЙЖХХ ХГ РЙЮМЕИ Б ЮПУХРЕЙРСПЕ]. Woodhead Publishing Series in Textiles, 2015. 823 p.
    12. Cherif C. Textile materials for lightweight constructions: Technologies - methods - materials - properties [рЕЙЯРХКЭМШЕ ЛЮРЕПХЮКШ ДКЪ КЕЦЙХУ ЙНМЯРПСЙЖХИ: РЕУМНКНЦХХ - ЛЕРНДШ - ЛЮРЕПХЮКШ - ЯБНИЯРБЮ]. Springer, 2016. 677 p.
    13. Beccarelli P. Biaxial testing for fabrics and foils. Optimizing devices and procedures [дБСУНЯМШЕ ХЯОШРЮМХЪ ДКЪ РЙЮМЕИ Х ОКЕМНЙ. нОРХЛХГЮЖХЪ СЯРПНИЯРБ Х ОПНЖЕДСП]. Springer, 2015. 138 p.
    14. Ermolov V. V., Bird W. W., Bubner E. Pnevmaticheskie stroitel'nye konstruktsii [Pneumatic building structures]. Moscow, Stroyizdat Publ., 1983. 439 p.
    15. Bridgens B. N., Gosling P. D., Birchall M. J. S. Tensile fabric structures: concepts, practice & developments [лЕЛАПЮММШЕ ЙНМЯРПСЙЖХХ ХГ РЙЮМХ: ХДЕХ, ОПЮЙРХЙЮ Х ПЮГПЮАНРЙХ]. Struct. Eng., 2004, vol. 82, no. 14, pp. 21-27.
    16. Chen S., Ding X., Yi H. On the anisotropic tensile behaviors of flexible polyvinyl chloride-coated fabrics [юМХГНРПНОМНЕ ОНБЕДЕМХЕ ЦХАЙХУ РЙЮМЕИ Я ОНКХБХМХКУКНПХДМШЛ ОНЙПШРХЕЛ ОПХ ПЮЯРЪФЕМХХ]. Text. Res. J., 2007, vol. 77, no. 6, pp. 369-374.
    17. Dinh T. D., et al. A new elasto-plastic material model for coated fabric [мНБЮЪ СОПСЦН-ОКЮЯРХВЕЯЙЮЪ ЛНДЕКЭ ДКЪ РЙЮМЕИ Я ОНЙПШРХЕЛ]. Eng. Struct., 2014, vol. 71, pp. 222-233.
    18. Galliot C., Luchsinger R. H. The shear ramp: A new test method for the investigation of coated fabric shear behaviour. Part I. Theory ["The shear ramp": МНБШИ ЛЕРНД ХЯЯКЕДНБЮМХЪ ОНБЕДЕМХЪ РЙЮМЕИ Я ОНЙПШРХЕЛ ОПХ ЯДБХЦЕ. вЮЯРЭ I. рЕНПХЪ]. Compos. Part A, Appl. Sci. Manuf., 2010, vol. 41, no. 12, pp. 1743-1749.
    19. Galliot C., Luchsinger R. H. The shear ramp: A new test method for the investigation of coated fabric shear behaviour. Part II. Experimental validation ["The shear ramp": МНБШИ ЛЕРНД ХЯЯКЕДНБЮМХЪ ОНБЕДЕМХЪ РЙЮМЕИ Я ОНЙПШРХЕЛ ОПХ ЯДБХЦЕ. вЮЯРЭ II. щЙЯОЕПХЛЕМРЮКЭМЮЪ ОПНБЕПЙЮ]. Compos. Part A, Appl. Sci. Manuf., 2010, vol. 41, no. 12, pp. 1750-1759.
    20. Gosling P. D., et al. Analysis and design of membrane structures: Results of a round robin exercise [пЮЯВЕР Х ОПНЕЙРХПНБЮМХЕ ЛЕЛАПЮММШУ ЙНМЯРПСЙЖХИ: ПЕГСКЭРЮРШ, ОНКСВЕММШЕ ОН ЙПСЦНБНИ ЯХЯРЕЛЕ]. Eng. Struct., 2013, vol. 48, pp. 313-328.
    21. Zhang L. Off-axial tensile properties of precontraint PVDF coated polyester fabrics under different tensile rates [яБНИЯРБЮ "ОПЕЙНМРПЩИМ" РЙЮМХ Я обдт ОНЙПШРХЕЛ ОПХ БМЕНЯЕБШУ ХЯОШРЮМХЪУ Я ПЮГКХВМНИ ЯЙНПНЯРЭЧ ПЮЯРЪФЕМХЪ]. Adv. Mater. Sci. Eng., 2016, vol. 2016, Пp. 1-12.
    22. Ibragimov A. M., Kustov A. A. Mechanical properties of technical coated fabrics under axial and off-axial tensile tests. Promyshlennoye i grazhdanskoye stroitel'stvo, 2018, no. 3, pp. 41-50. (In Russian).
    23. Mekheda V. A. Tenzometricheskiy metod izmereniya deformatsiy [Strain measurement method]. Samara, SGAU Publ., 2011. 57 p. (In Russian).
  • For citation: Ibragimov A. M., Kustov A. A., Mokin N. A. Experimental and Numerical Analysis Stress-Strain State of Tensile Membrane Hypar Structures. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2018, no. 7, pp. 35-42. (In Russian).


BACK