Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • Mechanical Properties of Technical Coated Fabrics under Axial and Off-Axial Tension
  • UDC 624.072.1
    Alexander M. IBRAGIMOV, e-mail:
    Alexey A. KUSTOV, e-mail:
    Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    Abstract. Results of laboratory tests of a technical coated fabric under the axial and off-axial tension and also biaxial tension with shear carried out by the authors of the article are considered. The purpose of the research was to determine the mechanical properties of materials used when simulating the work of soft shell-type structures. Two different types of a technical coated fabric were used in the experiments: with and without PrecontraintR technology. To measure the displacement and strain fields on the surface of specimens, the method of digital image correlation has been used. Numerical simulation of technical coated fabrics, imitating carried-out laboratory tests, has been executed with the use of software program "Ansys Workbench". When analyzing the results of numerical experiments it is revealed that shearing stresses make a significant contribution to the stress-strain state of the material. The possibility of applying several classical criteria for fracture strength of composite materials in order to predict and evaluate the behavior of technical coated fabrics under load is shown.
    Key words: technical coated fabric, soft shell-type structures, laboratory tests, numerical simulation, digital image correlation.
    1. Kustov A. A., Ibragimov A. M. Procedures and results of fullscale tests of technical fabrics with coating. Part 1. Review of conducted studies. Stroitel'nye materialy, 2016, no. 11, pp. 41-45. (In Russian).
    2. Kustov A. A., Ibragimov A. M. Procedures and results of fullscale tests of technical fabrics with coating. Part 2. Review of conducted studies. Stroitel'nye materialy, 2016, no. 12, pp. 86-90. (In Russian).
    3. Kustov A. A., Ibragimov A. M. Mathematical models of technical fabrics with coating. Stroitel'nye materialy, 2017, no. 1-2, pp. 94-98. (In Russian).
    4. Beccarelli P. Biaxial testing for fabrics and foils: optimizing devices and procedures [Двухосные испытания для технических тканей и пленок: оптимизация оборудования и процедур]. Springer, 2015. 150 p.
    5. Chen S., Ding X., Yi H. On the Anisotropic Tensile Behaviors of Flexible Polyvinyl Chloride-coated Fabrics [Анизотропное поведения гибких тканей с покрытием из поливинилхлорида]. Text. Res. J., 2007, vol. 77, no. 6, pp. 369-374.
    6. Colman A. G., Bridgens B. N., Gosling P. D., Jou G. T., Hsu X. Y. Shear behaviour of architectural fabrics subjected to biaxial tensile loads [Сдвиговое поведение архитектурных тканей при двухосном растяжении]. Compos. Appl. Sci. Manuf., 2014, vol. 66, pp. 163-174.
    7. Galliot C., Luchsinger R. H. The shear ramp: A new test method for the investigation of coated fabric shear behaviour [Новый метод испытания технических тканей с покрытием для определения сдвиговых параметров]. Compos. Part A Appl. Sci. Manuf., 2010, vol. 41, no. 12, pp. 1743-1759.
    8. Gosling P. D., et al. Analysis and design of membrane structures: Results of a round robin exercise [Анализ и проектирование мембранных конструкций: результаты решения задач]. Eng. Struct., 2013, vol. 48, pp. 313-328.
    9. Zhang L. Off-axial tensile properties of precontraint PVDF coated polyester fabrics under different tensile rates [Внеосевые свойства технической ткани с покрытием при испытаниях с различной скоростью растяжения]. Adv. Mater. Sci. Eng., 2016, vol. 2016, pp. 1-12.
    10. Launay J., Hivet G., Duong A. V., Boisse P. Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements [Экспериментальное исследование влияния растяжения в плоско-напряженном поведении тканых композитных материалов при сдвиге]. Compos. Sci. Technol., 2008, vol. 68, no. 2, pp. 506-515.
    11. Lin H., Clifford M. J., Long A. C., Sherburn M. Finite element modelling of fabric shear [Конечно-элементное моделирование сдвига в ткани]. Model. Simul. Mater. Sci. Eng., 2009, vol. 17, no. 1, pp. 15008.
    12. Penava Ю., Penava D. Р., Nakiг M. Woven fabrics behavior in pure shear [Поведение технических тканей при чистом сдвиге]. J. Eng. Fiber. Fabr., 2015, vol. 10, no. 4, pp. 114-125.
    13. Peng X.Q., Cao J. A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics [Механическая неортогональная структурная модель поведения тканых композитов]. Compos. Appl. Sci. Manuf., 2005, vol. 36, no. 6, pp. 859-874.
    14. Skelton J. Fundamentals of fabric shear [Фундаментальные основы сдвига ткани]. Text. Res. J., 1976, vol. 46, no. 12, pp. 862-869.
    15. Willems A., Lomov S. V. , Verpoest I., Vandepitte D. Optical strain fields in shear and tensile testing of textile reinforcements [Оптические поля деформаций текстильных композитов в испытаниях при сдвиге и растяжении]. Compos. Sci. Technol., 2008, vol. 68, no. 3-4, pp. 807-819.
    16. Zhang Y., Zhang Q., Lv H. Mechanical properties of polyvinylchloride-coated fabrics processed with Precontraint (R) technology [Механические свойства технических тканей с покрытием из поливинилхлорида, изготовленные с технологией Precontraint]. J. Reinf. Plast. Compos., 2012, vol. 31, no. 23, pp. 1670-1684.
    17. Dinh T. D., et al. A new elasto-plastic material model for coated fabric [Новая упруго-пластическая модель поведения технических тканей с покрытием]. Eng. Struct., 2014, vol. 71, pp. 222-233.
    18. Ambroziak A., Klosowski P. Mechanical properties for preliminary design of structures made from PVC coated fabric [Механические свойства для предварительных расчетов конструкций из тканей с ПВХ покрытием]. Constr. Build. Mater, 2014, vol. 50, pp. 74-81.
    19. Chen J., et al. Mechanical behaviors and elastic parameters of laminated fabric URETEK3216LV subjected to uniaxial and biaxial loading [Механическое поведение и упругие параметры ткани URETEK3216LV при одноосных и двухосных испытаниях]. Appl. Compos. Mater., 2017, vol. 24, iss. 5, pp. 1107-1136.
    20. Gosling P. D., Bridgens B. N. Material testing and computational mechanics - a new philosophy for architectural fabrics [Испытание материалов и вычислительная механика - новая философия архитектурных тканей]. Int. J. of Space Structures, 2008, vol. 23, no. 4, pp. 215-232.
    21. Bridgens B. N., Gosling P. D., Jou G.-T. ,Hsu X.-Y. Inter-laboratory comparison of biaxial tests for architectural textiles [Межлабораторное сравнение двухосных испытаний архитектурных тканей]. J. Text. Inst., 2012, vol. 103, no. 7, pp. 706-718.
    22. Vysochina K. Identification of shear stiffness of soft orthotropic textile composites. Part I. Development of a mixed method for shear elastic constant identification [Определение жесткости сдвига в мягких ортотропных текстильных композитах. Ч. 1. Разработка смешанного метода для определения упругих параметров]. J. Ind. Text. 2005, vol. 35, no. 2, pp. 137-155.
  • For citation: Ibragimov A. M., Kustov A. A. Mechanical Properties of Technical Coated Fabrics under Axial and Off-Axial Tension. Promyshlennoye i grazhdanskoye stroitel'stvo [Industrial and Civil Construction], 2018, no. 3, pp. 41-50. (In Russian).