Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) Web of Science

Contents of issue 1 (january) 2014

  • CONSTRUCTION
  • Engineering Technique of Calculation of Temperatures in Sections of Reinforced Concrete Elements with Fire-Protection of "Monocot-Krilak" Type under Standard Thermal Action
  • UDC 699.81.001.24
    Ivan I. VEDYAKOV, Yury V. KRIVTSOV, Vasily V. PIVOVAROV, Vladimir V. PETROV
    Abstract. The possibility of developing simple engineering methods of calculation of thermal fields of the elements of reinforced concrete structures with the constructive fire-protection of "Monocot-Krilak" type is shown on the example of a concrete plate of roofing profile. These methods are based on the approximation of the ratio between temperature in the section element with fire-protection and the temperature of the same element without fire-protection. In both cases the calculation of thermal fields is performed using specialized computing complex. The found coefficient is a function of the concrete protective layer thickness, the thickness of the protective layer "Monocot-KrilaK" and time of thermal action.
    Key words: element of reinforced concrete structure, engineering method, thermal fields, fire-protection of "Monocot-KrilaK" type, standard thermal action.
  • REFERENCES
    1. Milovanov A. F. Stoykost' zhelezobetonnykh konstruktsiy pri pozhare. Moscow, Stroyizdat Publ., 1998. 304 p. (In Russian).
    2. Eurocode 2: Design of concrete structures. Part 1-2: Structural fire design. EN 1992-1-2:2004.
    3. Bessonov N. M., Eremina T. Yu., Dmitrieva Yu. N., Krasheninnikova M. V. Raschetnyy metod opredeleniya predelov ognestoykosti metallokonstruktsiy, pokrytykh vspuchivayushchimsya ognezashchitnym sostavom. Pozharnaya bezopasnost', 2007, no. 1, pp. 22-28. (In Russian).
    4. Krivtsov Yu. V., Lamkin O. B., Rubtsov V. V., Gabdulin R. Sh. Tonkosloynaya ognezashchita betona. Promyshlennoe i grazhdanskoe stroitel'stvo, 2006, no. 6, pp. 42-43. (In Russian).
  • Calculation-Experimental Method of Determining the Efficient Thermo-Physical Characteristics of Intumescent Coating
  • UDC 699.81:691.620.197
    Ivan I. VEDYAKOV, Yury V. KRIVTSOV, Vasily V. PIVOVAROV, Vladimir V. YASHIN, Vladimir V. PETROV
    Abstract. To perform the thermo-technical heat calculations of building constructions with intumescent coating (IC) it is suggested to use the efficient thermo-physical characteristics (ETPC), such as coefficients of heat capacity and heat conductivity. The calculation of ETPC is performed by the solution of the inverse coefficient task of non-stationary heat conductivity on the basis of standard tests. ETPC make it possible to calculate without the simulation of growth and degradation of foam coke with the use of the certified computing programs. The implementation of the ideas is shown on the simple example in which the obtained assessments of ETPC IC do not pretend to be generalized.
    Key words: building constructions, intumescent coating, efficient thermo-physical characteristics, thermo-technical calculation, coefficients of heat capacity and heat conductivity.
  • REFERENCES
    1. Milovanov A. F. Stoykost' zhelezobetonnykh konstruktsiy pri pozhare. Moscow, Stroyizdat Publ., 1998. 304 p. (In Russian).
    2. Krivtsov Yu. V., Lamkin O. B., Rubtsov V. V., Gabdulin R. Sh. Tonkosloynaya ognezashchita betona. Promyshlennoe i grazhdanskoe stroitel'stvo, 2006, no. 6, pp. 42-43. (In Russian).
    3. Nekhanov S. A., Pimenova V. P. Eksperimental'noe izuchenie vliyaniya tolshchiny vspenivayushchikhsya pokrytiy na ognezashchitnuyu effektivnost'. Pozharovzryvobezopasnost', 2011, vol. 20, no. 5, pp. 2-9. (In Russian).
    4. Bessonov N. M., Eremina T. Yu., Dmitrieva Yu. N., Krasheninnikova M. V. Raschetnyy metod opredeleniya predelov ognestoykosti metallokonstruktsiy, pokrytykh vspuchivayushchimsya ognezashchitnym sostavom. Pozharnaya bezopasnost', 2007, no. 1, pp. 22-28. (In Russian).
    5. Kovalev A. I., Krukovskiy P. G. Eksperimental'noe issledovanie ognezashchit-noy sposobnosti vspuchivashchegosya ognezashchitnogo pokrytiya na betonnoy plite. Pozhezhna bezpeka : zb. nauk. prats' LDU BzhD, 2010, no. 17, pp. 172-179. (In Russian).
  • Problems of Standardization of Fire Resistance for Steel Constructions of Atmospheric Precipitations Protection Shell at Stadiums
  • UDC 614.841.33:624.014.2
    Yury V. KRIVTSOV, Anatoly K. MIKEEV, Vasily V. PIVOVAROV, Denis G. PRONIN, Dmitry A. SPIRIDONOV
    Abstract. In contemporary projecting of stadiums a construction (shell) that provides the protection against atmospheric precipitations and high acoustic requirements is used. It is necessary for projects attestation as the highest class stadiums with possibility to hold matches of any class. In this article problems of fire resistance standardization for bearing metal frame shell constructions which are the further development of the space-grid structures designed in 1970s are examined.
    Key words: metal structures of shell, stadiums, ultimate fire-resistance, structural constructions, bearing structures of a building at fire.
  • REFERENCES
    1. Rekomendatsii po proektirovaniyu strukturnykh konstruktsiy. TsNIISK im. V. A. Kucherenko. Moscow, Stroyizdat Publ., 1984. 302 p. (In Russian).
    2. Krivtsov Yu. V., Mikeev A. K., Pronin D. G. Razvitie trebovaniy pozharnoy bezopasnosti k ognestoykosti konstruktsiy v Stroitel'nykh normakh i pravilakh, razrabatyvaemykh TsNIISK im. V.A. Kucherenko. Promyshlennoe i grazhdanskoe stroitel'stvo, 2009, no. 10, pp. 25-26. (In Russian).
    3. Krivtsov Yu. V., Mikeev A. K., Pronin D. G. Matematicheskoe modelirovanie pozhara dlya opredeleniya trebuemykh predelov ognestoykosti konstruktsiy. Aktual'nye problemy issledovaniy po teorii sooruzheniy : sb. nauch. st. v 2 part. Moscow, OAO "TsPP" Publ., 2009. Part. 2, pp. 307-315. (In Russian).
  • Housing Construction System on the Basis of Thermoarmopackets
  • UDC 69.002.2
    Viktor M. BOBRYASHOF, Vladimir E. BATRAK
    Abstract. Technical solutions of the unique construction system and experimental-industrial technology for production of elements for walls, roofs, floors, foundations on the basis of volumetric thermoarmopackets inside of which the effective filling heat insulation with heat conductivity coefficient of less than 0,025 W/(mK) foams are presented. The housing construction system developed by TSNIISK named after V. A. Kucherenko is notable for construction rapidity, small power consumption, compactness due to the use of foaming filling compositions and also satisfy the requirements of heat protection of buildings for all climatic regions of Russia. The system is designed for building of affordable housing and for monolithic house-building at thickness of walls with facing up to 20 cm. The efficiency of the system is competitive with other well-known analogues. A positive decision on granting a patent to this system of housing construction is issued.
    Key word: reinforcement cage, filling heat insulation, thermoarmopacket, production technology, technical solutions, walls, roofs, floors, foundations.
  • REFERENCES
    1. Telichenko V. I., Gogina E. S. Kompleksnyy podkhod k provedeniyu energoeffektivnoy modernizatsii zhilykh zdaniy i sistem teplosnabzheniya. Gradostroitel'stvo, 2012, no. 2, pp. 72-74.
    2. Kalyuzhnyuk M. M., Sandan R. N. O kontseptual'nykh osnovakh innovatsionnogo razvitiya stroitel'noy otrasli Rossii: sistemno-sinergeticheskiy podkhod. Vestnik grazhdanskikh inzhenerov, 2010, no. 3 (24), pp. 108-116.
    3. Linke R., Karkher S., Fort T. Energeticheskaya sanatsiya panel'nykh zdaniy v Rossii: ne upustit' vremya! Promyshlennoe i grazhdanskoe stroitel'stvo, 2012, no. 6, pp. 43-45.
    4. Rekonstruktsiya, energeticheskaya modernizatsiya zhilykh zdaniy i teplovoy infrastruktury v Rossiyskoy Federatsii : materialy rossiysko-nemetskogo tekhn. seminara (8-9 dekabrya 2011 g., Moskva). Moscow, MGSU Publ., 2012. 282 p.
  • Experimental Studies of Shear and Tensile Strengths of Panel Vertical Joints with the Use of Ties of Swivels BT- Spannschloss
  • UDC 69.057.4:621.882.001.5
    Arkady V. GRANOVSKY, Artur I. DOTTUEV, Vladimir P. BLAZHKO
    Abstract. The results of experimental studies of shear and tensile strengths of vertical joints of large-panel buildings on the basis of the use of swivels BT- Spannschloss (Germany) conducted at TSNIISK named after V.A. Kucherenko are presented. This innovative technique provides for the use of screwed connections for connecting reinforced concrete elements instead of welded ones. The connection consists of a swivel, coupling bolts, and anchors. The studies made it possible to determine strength and rigid characteristics of ties and develop the recommendations on their use in panel buildings.
    Key words: vertical joints, large-panel buildings, swivel BT, tensile and shear strengths.
  • REFERENCES
    1. Grigor'ev Yu. P. "Industrial'noe domostroenie dlya massovogo stroitel'stva i segodnya opravdyvaet sebya kak bystryy i ekonomichnyy sposob stroitel'stva". Promyshlennoe i grazhdanskoe stroitel'stvo, 2011, no. 12, pp. 5-7. (In Russian).
    2. Nikolaev S. V. Menyaem KPD na PKD. Tekhnologii stroitel'stva, 2012, no. 3 (86), pp. 16-18. (In Russian).
    3. Blazhko V. P. Tendentsii v razvitii konstruktivnykh sistem panel'nogo domostroeniya. Zhilishchnoe stroitel'stvo, 2012, no. 4, pp. 43-46. (In Russian).
    4. Goryachek E., Lishak V. I., Pume D., et al. Prochnost' i zhestkost' stykovykh soedineniy panel'nykh konstruktsiy. Moscow, Stroyizdat Publ., 1980. 192 p. (In Russian).
  • Spectra of Power and Energy as Criteria of Intensity of Seismic Effects
  • UDC 699.841
    Aramais V. MINASYAN, Marina L. SHUKLINA
    Abstract. On the basis of the analysis of consequences of a series of devastating earthquakes it is revealed that the intensity of seismic effects (besides the acceleration of soil) depends on spectral characteristics of power and energy of external effects. Designing dynamically robust systems it is necessary to take into account together with parameters of the ground vibration (accelerations, speeds and displacements) spectra of power and energy as more adequate criteria of assessment of the intensity of external effects.
    Key words: power and energy spectra, additional criteria of intensity, spectrum of system survivability, seismic effects.
  • REFERENCES
    1. Ayzenberg Ya. M., Minasyan A. V., Smirnov V. I., Avetisyan A. M. Otsenka intensivnosti seysmicheskikh vozdeystviy s uchetom gruntovykh usloviy na Leninakanskom plato Armenii. Seysmostoykoe stroitel'stvo. Bezopasnost' sooruzheniy, 2000, no. 4, pp. 15-17. (In Russian).
    2. Nazarov A. G. Metod inzhenernogo analiza seysmicheskikh sil. Erevan, AN Arm. SSR Publ., 1959. 314 p. (In Russian).
    3. Gutenberg B., Rikhter K. Seysmichnost' Zemli. Moscow, Inoizdat Publ., 1948. 118 p. (In Russian).
    4. Syuekhiro K. Inzhenernaya seysmologiya. Moscow. Ekonomicheskaya zhizn' Publ., 1935. 137 p. (In Russian).
    5. Polyakov S. V. Posledstviya sil'nykh zemletryaseniy. Moscow, Stroyizdat Publ., 1978. 310 p. (In Russian).
    6. Osnovy teorii seysmostoykosti zdaniy i sooruzheniy / K. S. Zavriev , A. G. Nazarov, et al. Moscow, Stroyizdat Publ., 1970. 224 p. (In Russian).
    7. Nikolaenko N. A. Dinamika i seysmostoykost' konstruktsiy, nesushchikh rezervuarov. Moscow, Gosstroyizdat Publ., 1963. 156 p. (In Russian).
    8. Novatskiy V. Teoriya uprugosti. Moscow, Mir Publ., 1975. 872 p. (In Russian).
    9. Rzhanitsyn A. R. Teoriya polzuchesti. Moscow, Stroyizdat Publ, 1968. 415 p. (In Russian).
    10. Ganiev R.F., Kononenko V. O. Kolebaniya tverdykh tel. Moscow, Nauka Publ., 1976. 431 p. (In Russian).
    11. Minasyan A. V. Vliyanie formy impul'sa na koeffitsient dinamichnosti seysmozashchitnykh sistem. Seysmostoykoe stroitel'stvo. Bezopasnost' sooruzheniy, 2000, no. 4, pp. 28-29. (In Russian).
    12. Minasyan A. V. Kompleksnoe rezervirovanie spektral'noy zhivuchesti unikal'nykh sooruzheniy pri chrezvychaynykh dinamicheskikh, seysmicheskikh i tekhnogennykh vozdeystviyakh. Vestnik NITs "Stroitel'stvo", 2011, no. 3-4, pp. 157-171. (In Russian).
  • To the Evaluation of Bearing Capacity of Beams with Flexible Un-stiffened Walls
  • UDC 624.042.072
    Yury N. SIMAKOV
    Abstract. On the basis of analysis of the test results of nine full-scale models of beams with a flexible web un-stiffened with ribs it is proposed to replace the formula 163a, p.18.9* SNIP II-23-81 with a formula that more accurately reflects the bearing capacity of such beams. The mechanism of operation of beams with flexible web under load up to the ultimate state is shown. A comparison of the experimental limit load calculated according to the formula of SNiP and to the proposed methodology is made. The curve of dependence of the reduced coefficient K on the generalized parameter y is made. The dependence obtained makes it possible to bring the determination of ultimate load for beams with flexible un-stiffened web to the traditional calculation of the strength of flexible elements.
    Key words: bearing capacity of beam, flexible web, testing, ultimate experimental and calculated loads, reduced coefficient, generalized parameter.
  • REFERENCES
    1. Simakov Yu. N. Eksperimental'nye issledovaniya dvutavrovykh balok s gibkimi nepodkreplennymi stenkami : sb. tr. "Prikladnye i teoreticheskie issledovaniya stroitel'nykh konstruktsiy". TsNIISK im. V. A. Kucherenko. Moscow, 1981, pp. 95-103. (In Russian).
    2. Simakov Ju. N. Jykistmttmill uumalevyill varustettujen I-palkkien kapasiteetin arvionti. Tersrakenne. 1986, vol. 1, pp. 30-32. (In Finnish).
    3. Broude B. M., Moiseev V. I. K raschetu balok s gibkimi stenkami. Stroitel'naya mekhanika i raschet sooruzheniy, 1978, no. 1, pp. 60-61. (In Russian).
    4. Mel'nikov N. P., Levitanskiy I. V., Kalenov V. V. Tonkostennye stal'nye balki - effektivnyy vid stroitel'nykh konstruktsiy. Promyshlennoe stroitel'stvo,1974, number 10, pp. 6-11. (In Russian).
    5. Konstruktsii pokrytiya zavoda iskusstvennogo volokna iz tonkostennykh balok. Kolenov V. V., Troitskiy P. N., Ayrumyan E. L., et al. Promyshlennoe stroitel'stvo,1981, no. 4, pp. 23-26. (In Russian).
  • Joint Work of Old and New Masonries in Walls under Restoration
  • UDC 693.22
    Mikhail K. ISHCHUK, Evgeny M. ISHCHUK, Irina G. FROLOVA
    Abstract. The results of laboratory experimental studies of samples from the historic brick masonry, which were enhanced by the new masonry with bonding with the old one are presented. The influence of the quality of filling joints with mortar in areas pairing of old and new brickworks at the local application of load and uniformly distributed load was studied. Masonry samples were produced both of contemporary and historic brick taken from the walls of the Central Exhibition Hall "Manezh" and the Bolshoi Theatre during their renovation. Quality of bonding did not significantly impact on the bearing capacity of the samples at the local compression. The bearing capacity of samples was significantly lower than capacity of control samples from monolithic masonry of the same cross-section. Studies have shown that the masonry integrity at parts needed to be restored is low and for its restoration the injection of mortar in masonry joints under pressure is recommended.
    Key words: old and new masonry, part needed in restoration, test of samples for local compression, filling joints with mortar.
  • REFERENCES
    1. Khanov N. M. Prochnost' i deformativnost' kirpichnoy kladki pri mestnom szhatii s uchetom ee in"etsirovaniya modifitsirovannymi polimernymi kompozitsiyami : avtoref. dis. kand. tekhn. nauk. Moscow, 1993. 152 p. (In Russian).
    2. Ishchuk M. K., Ishchuk E. M., Frolova I. G. Usilenie kamennykh konstruktsiy. Promyshlennoe i grazhdanskoe stroitel'stvo, 2006, no. 8, pp. 28-30. (In Russian).
    3. Ishchuk M. K., Ishchuk E. M., Sokolov B. S. Issledovanie prochnosti i deformatsiy kirpichnykh sten i svodov Granovitoy palaty Moskovskogo Kremlya. Stroitel'naya mekhanika i raschet sooruzheniy, 2013, no. 4, pp. 15-20. (In Russian).
    4. Onishchik L. I. Osobennosti raboty kamennykh konstruktsiy pod nagruzkoy v stadii razrusheniya. Issledovaniya po kamennym konstruktsiyam. Moscow, Stroyizdat Publ., 1949, pp. 5-44. (In Russian).
  • Experimental Studies of Strength of Masonry Made of Large-Size Stones of Porous Ceramics at Tension
  • UDC 693.1:691.42.001.5
    Oleg I. PONOMAREV, Adol'f M. GORBUNOV
    Abstract. The results of experimental investigations of masonry strength at tension are presented. It is noted that designing the masonry structures from large-size ceramic stones it is necessary to assess the masonry strength not only under compression but also under tension. Tensile stresses appear in the masonry as a result of the outdoor air change, mortar shrinkage and other effects. On the basis of investigation results the quantitative assessment of stretching forces in the masonry and also deformations is made.
    Key words: experimental investigations, resistance, masonry, large-size ceramic stone, deformation, temperature, tension, efforts.
  • Evaluation of Strength of Masonry from Large-Format Porous Ceramic Stone According to Russian and European Standards
  • UDC 693.1:691.42(083.75)
    Marina O. PAVLOVA, Vladimir A. ZAKHAROV, Sergey V. KUSHNIR
    Abstract. The Russian and European standards for designing masonry structures are considered. Methods for defining calculated values of the masonry strength according to SP 15.13330.2013 and Eurocode 6 are presented. Values of the empirical coefficients used to determine the strength of masonry from large-size ceramic stones under compression are refined. According to the research, the analysis of the possibility of using the method adopted in EN 1996-1-1 for assessing the strength of masonry under compression on the territory of the Russian Federation is made.
    Key words: adaptation, Eurocode 6, construction norms and regulations, large-format ceramic stones.
  • REFERENCES
    1. Brusentsov G. N., Kameyko V. A. Sopostavlenie tekhnicheskogo urovnya otechestvennykh i zarubezhnykh norm rascheta i proektirovaniya kamennykh konstruktsiy. VNIIS. Vol. 8. Moscow, 1985, pp. 13-15. (In Russian).
    2. Vedyakov I. I. Printsipy aktualizatsii rossiyskikh stroitel'nykh norm i pravil s uchetom evropeyskikh standartov. Promyshlennoe i grazhdanskoe stroitel'stvo, 2012, no. 3, pp. 6-7. (In Russian).
    3. Volkov Yu. S., Pavlova M. O., Kushnir S. V. O primenenii Evrokoda-6 "Kamennye konstruktsii" v Rossiyskoy Federatsii. Stroitel'naya mekhanika i raschet sooruzheniy, 2012, no. 5, pp. 74-76. (In Russian).
    4. Ponomarev O. I., Wolkov J. S. About harmonization of standard documents of the Russian Federation and the European Union countries. CIB COMMISSION W023 - WALL STRUCTURES. Moscow, 2010.
    5. EN 1996-1-1. Raschet i proektirovanie kamennykh konstruktsiy. Obshchie pravila. Pravila dlya armirovannykh i nearmirovannykh kamennykh konstruktsiy. (In Russian).
    6. Sementsov S. A. Raschet kamennykh i armokamennykh konstruktsiy po raschetnym predel'nym sostoyaniyam. Moscow, Gosstroyizdat Publ., 1955. 117 p. (In Russian).
    7. Raschet stroitel'nykh konstruktsiy po predel'nym sostoyaniyam. Moscow, Gosstroyizdat Publ., 1951. 273 p. (In Russian).
    8. Ponomarev O. I. , Gorbunov A. M., Pavlova M. O. O primenenii krupnoformatnykh keramicheskikh kamney iz porizovannoy keramiki pri vozvedenii energoeffektivnykh zdaniy, v tom chisle v seysmicheskikh rayonakh // Seysmostoykoe stroitel'stvo. Bezopasnost' sooruzheniy, 2012, no. 5, pp. 48-53. (In Russian).
  • MANAGEMENT. ECONOMY. MARKETING
  • Economic and technological efficiency of the construction industry of the city of Moscow
  • UDC 69.003:658.011.8/.012:519.2/6
    Vladimir V. GYRIEV, Alexander N. DMITRIEV, Antonina Y. SICHKAREVA, Zoya S. SAZGNEVA
    Abstract. The economic and technological data of 20 Moscow building construction industry factories being under modernization were examined , applying simplex-latticed Sheffe plans. The diagrams, showing fields of economic-technological efficiency in case of implementing innovation technologies are presented. The level of investments in such new technologies is predicted up to the year of 2016, illustrating opportunity to raise profitability level and funds efficiency of industry by 2,5-4,5 times. Monitoring and supporting innovatively active clusters of enterprises are recommended.
    Key words: economic, technological, efficiency, industry, simplex-latticed Sheffe, innovation, recommendations.
  • REFERENCES
    1. Sheffe H. Experiments with mixtures. V. Roy. State Soc. 1958. Ser. B, v. 20, pp. 344 -360.
    2. Telichenko V. I. Innovatsii v stroitel'stve - vse vperedi. Promyshlennoe i grazhdanskoe stroitel'stvo, 2013, no. 7, pp. 88-92. (In Russian).
    3. Sichkareva A. Yu. Khimiya i tekhnologiya magnitoaktivirovannykh klinkerov i tsementov: avtoref. dis. d-ra tekhn. nauk. Moscow, 1994. (In Russian).
    4. Sichkareva A. Yu., Kuznetsova T. V., et al. Betonosmesitel'. Patent Rossii 1752540. 1982. Byul. 29. (In Russian).
    5. Grigor'ev Yu. P. O pervoocherednykh zadachakh po modernizatsii i tekhnologicheskomu razvitiyu industrial'nogo domostroeniya. Promyshlennoe i grazhdanskoe stroitel'stvo, 2010, no. 12, pp. 3-5. (In Russian).
    6. Gur'ev V. V. Vliyanie strukturnykh osobennostey teploizolyatsionnykh materialov iz gazonapolnennykh plastmass na ikh mekhanicheskie svoystva. Promyshlennoe i grazhdanskoe stroitel'stvo, 2010, no. 12, pp. 19-23. (In Russian).
    7. Dmitriev A. N., Gur'ev V. V. Snizhenie energoemkosti v stroitel'noy otrasli i sovershenstvovanie proektov dlya massovogo stroitel'stva v Moskve. Promyshlennoe i grazhdanskoe stroitel'stvo, 2013, no. 7, pp. 47-50. (In Russian).
    8. Dmitriev A. N. Zadacha stroykompleksa Moskvy - stroit' po mirovym standartam energo- i teplosnabzheniya. Promyshlennoe i grazhdanskoe stroitel'stvo, 2010, no. 8, pp. 41-43. (In Russian).
    9. Nikitin E. E. Meropriyatiya po vypusku modernizirovannykh seriy zhilykh domov: tochka zreniya inzhenera. Promyshlennoe i grazhdanskoe stroitel'stvo, 2010, no. 12, pp. 6-7. (In Russian).
  • FOR THE BENEFIT OF DESIGNERS
  • Problems of Building of Anti-Filtering Screens and "Slurry Walls" When Developing Underground Space on Urban Underflooded Territories
  • UDC 624.138.24:69.035.4
    Yury V. PONOMARENKO, Anatoliy A. ISOTOV
    Abstract. Difficulties of realization of anti-filtering measures in the course of underground construction on the territories of underflooded cities are examined. As a rule, emerging complications and accidents are connected with anthropogenic hydrogeological conditions of a site of underground construction. It is shown, that one of primary tasks when developing the underground space is a creation of reliable anti-filtering barriers along the perimeter of the construction site. The technology of erection of a "slurry wall" under surface constructions based on the complex use of screens of injection and infusion types with application of horizontal injection bore-holes is offered.
    Key words: underground space, water content of soil body, underflooding of built-up territories, anti-filtering screen, "slurry wall", water retaining structures.
  • REFERENCES
    1. Golitsynskiy D. M. K voprosu osvoeniya podzemnogo prostranstva bol'shikh gorodov i sooruzheniya transportnyy tonneley. Promyshlennoe i grazhdanskoe stroitel'stvo, 2012, no. 6, pp. 7-8. (In Russian).
    2. Ponomarenko Yu. V., Izotov A. A., Klimenko N. A., Kuz'kin V. S. Patent Rossii 2349710. Zayavl. 20.03.2009. (In Russian).
    3. Volkov Yu. I., Izotov A. A., Ponomarenko Yu. V. Protivofil'tratsionnye zavesy v promyshlennosti. Moscow, Ruda i metally Publ., 2014. 300 p. (In Russian).
  • Criteria of Technical Regulation of Design Decisions of Structures Erected over Rail Transport Tracks
  • UDC 625.1:725.3(083.75)
    Vladimir M. FRIDKIN
    Abstract. In megalopolises and large cities of Russia there is a need for the construction of special buildings or other transport constructions of great extent over the tracks of rail transport. Criteria of complex safety of construction and long-term operation of such objects are formulated; scenarios of their emergency situations are considered. The domestic normative base of designing, erection and operation of city galleries is presented; the need for their further development is noted.
    Key words: linear-lengthy engineering structures, galleries, railway lines, safety, scenarios of emergency situations, technical regulations.
  • REFERENCES
    1. Shchusev P. V. Mosty i ikh arkhitektura. Moscow, Gosudarstvennoe izdatel'stvo po stroitel'stvu i arkhitekture Publ., 1953. 360 p. (In Russian).
    2. Perederiy G. P. Kurs mostov. Konstruktsii, proektirovanie i raschet. Vol. II: Mosty bol'shikh proletov. 2-e izd. M.-L. : NKPS, Goszheldorizdat Publ., 1933. 489 p. (In Russian).
    3. Bolotin V. V. Prognozirovanie resursa mashin i konstruktsiy. Moscow, Mashinostroenie Publ., 1984. 312 p. (In Russian).
    4. Gol'dshteyn R. V. O strukturno-kontinual'nom podkhode v mekhanike katastroficheskogo razrusheniya slozhnykh tekhnicheskikh sistem. Preprint 520. Moscow, Institut problem mekhaniki RAN, 1992. 13 p. (In Russian).
    5. Mileykovskiy I. E. Izuchenie protsessov razrusheniya zdaniy, sooruzheniy kak novoe napravlenie v stroitel'noy mekhanike. Issledovaniya i razrabotki effektivnykh konstruktsiy, metodov vozvedeniya zdaniy i sooruzheniy : mezhvuz. sb. nauch. tr. Belgorod : BelGTASM Publ., 1996, pp. 154-162. (In Russian).
    6. Fridkin V. M. Printsipy formoobrazovaniya v teorii lineyno-protyazhennykh sooruzheniy. Moscow, Lad'ya Publ., 2006. 512 p. (In Russian).
    7. Fridkin V. M. Formoobrazovanie stroitel'nykh konstruktsiy. Moscow, MISI-MGSU Publ., 2011. 170 p. (In Russian).
    8. Fridkin V. M. Osobennosti formoobrazovaniya bol'sheproletnykh sooruzheniy. Promyshlennoe i grazhdanskoe stroitel'stvo, 2007, no. 4, pp. 54-55. (In Russian).
  • TECHNICAL REGULATION IN CONSTRUCTION
  • The Role of Professional Standards in Increasing Efficiency of Building Production
  • UDC 69.007:658.386.3(083.74)
    Leonid N. CHERNYSHOV, Andrey K. SCHREIBER
    Abstract. The essence of branch levels of qualification as a mechanism of forming the professional standard with due regard for branch specificity and also the continuity of knowledge, habits and skills at levels of qualification of specialists in construction industry are disclosed. An inextricable link between professional and educational standards is presented.
    Key words: building production, work, work function, labor market, sphere of education, competence, qualification handbook, industry levels of qualifications, professional standards, personnel training.
  • REFERENCES
    1. Mashukova N. I. Professional'nyy standart i ego naznachenie. Energiya promyshlennogo rosta, 2008, no. 4-5 (25), pp. 41-46. (In Russian).
    2. Mukhametzyanov Z. R. Problemy sovershenstvovaniya organizatsionno - tekhnologicheskikh modeley stroitel'stva ob"ekta. Promyshlennoe i grazhdanskoe stroitel'stvo, 2012, no. 4, pp. 68-69. (In Russian).
    3. Prokopov F. T., Murav'eva A. A., Oleynikova O. N. Professional'nye standartoy. Rekomendatsii po razrabotke. Moscow, Virtual'naya galereya Publ., 2013. 24 p. (In Russian).
    4. Zbritskiy A. A., Chernyshov L. N. Predposylki i metodologiya razrabotki professional'nykh standartov dlya stroitel'stva i ZhKKh. Ekonomika stroitel'stva, 2012, no. 5, pp. 3-12. (In Russian).
  • ENGINEERING SURVEYS FOR CONSTRUCTION
  • Conditions of Coastal Zone of the Krasnodar Krai and Its Engineering Protection
  • UDC 624.131.1:627.52(470.62)
    Nikolay L. SHESHENYA
    Abstract. Conditions of the coastal zone of the Sea of Azov and Black Sea within the limits of the Krasnodar Krai are considered. It is noted that floods, wave actions from South-East to West-North-West and absence of tidal processes are typical for this territory. The excitement and power of storms at the coast is considered dangerous. The choice of the main directions of engineering protection of shores is substantiated as a result of the thorough study of natural conditions, prospects of economic and recreational use of the coast with due regard for requirements of environmental protection and economic indicators.
    Key words: floods, abrasion processes and speed of erosion, width of beaches, long shore stream, slopes and corners of their fall, coast protection works, landslides, rock falls, rocks, tectonic movements, seismicity.
  • REFERENCES
    1. Bogdanov M. I. Ispol'zovanie geoinformatsionnykh sistem dlya prognozirovaniya chrezvychaynykh situatsiy prirodnogo i tekhnogennogo kharaktera. Promyshlennoe i grazhdanskoe stroitel'stvo, 2007, no. 11, pp. 3-4 (In Russian).
    2. Budanov M. A., Sheshenja N. L. Ocenka social'no-jekologicheskih riskov projavlenija opasnyh processov v beregovyh zonah Chernogo morja. Promyshlennoe i grazhdanskoe stroitel'stvo, 2008, no. 11, pp. 11-12. (In Russian).
    3. Sheshenja N. L., Astvacaturova K. A. Osnovnye trebovanija k inzhenerno-geologicheskim izyskanijam dlja stroitel'stva zdanij i sooruzhenij povyshennogo urovnja otvetstvennosti. Promyshlennoe i grazhdanskoe stroitel'stvo, 2008, no. 11, pp. 8-10. (In Russian).
    4. Osobennosti ustrojstva buronabivnyh svaj v slabyh gruntah. A. I. Osokin, A. V. Sbitnev, A. B. Serebrjakova, S. V. Tatarinov. Promyshlennoe i grazhdanskoe stroitel'stvo, 2006, no. 6, pp. 50-52. (In Russian).
    5. Sheshenja N. L. Inzhenerno-geologicheskoe obosnovanie meroprijatij inzhenernoj zashhity zdanij i sooruzhenij ot opasnyh processov. Promyshlennoe i grazhdanskoe stroitel'stvo, 2008, no. 11, pp. 7-9. (In Russian).
  • THE "INDUSTRIAL AND CIVIL ENGINEERING" FACULTY TO BUILDERS
  • Comparison of Results of Calculation of Thin Flexible Slabs with the Use of Generalized Equations of Finite-Difference Method (FDM) and Method of Successive Approximations (MSA)
  • UDC 624.073.1
    Radek F. GABBASOV, Hoang Tuan ANH, Nguyen Hoang ANH
    Abstract. Bending plate, is widely used in the construction of large-span structures. Its advantage - light load, industrial production, low cost, easy installation and savings. Implementing the algorithm for calculating the bent plates in engineering practice is an important issue of the construction science. Generalized equations of finite difference method is a new trend in the calculation of building construction. Finite-difference method with generalized equation provides additional options for an engineer with other methods (FEM). From the construction practices, engineer will choose the best option for his project. In this way, the calculated algorithm of thin bent plates is proposed in this article can be used in engineering practice and in the educational process. Its advantages - simplicity and sufficient accuracy. Thanks to this fact, it can be implemented with a small number of partitions, and without using a computer program.
    Key words: Finite-difference method, method of successive approximations, bendable thin plate, calculation algorithm, finite element method, generalized equations, building construction.
  • REFERENCES
    1. Gabbasov R. F., Gabbasov A. R., Filatov V. V. Chislennoe postroenie razryvnykh resheniy zadach stroitel'noy mekhaniki. Moscow, ASV Publ., 2008. 288 p. (In Russian).
    2. Timoshenko S. P., Voynovskiy-Kriger S. Plastinki i obolochki : per. s angl. Moscow, Nauka Publ., 1966. 635 p. (In Russian).
    3. Kiselev V. A. Stroitel'naya mekhanika. Moscow, Stroyizdat Publ., 1969. 430 p. (In Russian).
    4. Kiselev V. A. Raschet plastin. Moscow, Stroyizdat Publ., 1973.151 p. (In Russian).
    5. Zenkevich O. Metod konechnykh elementov: ot intuitsii k obshchnosti. Mekhanika. Moscow, Mir Publ., 1960, no. 6, pp. 127-132. (In Russian).
    6. Luzhin O. V. Raschet plit pri slozhnom ochertanii kraya. Issledovaniya po teorii sooruzheniy. Moscow, Gosstroyizdat Publ., 1963, vol. XII, pp. 227-234. (In Russian).
  • Technical Solutions for Temperature Stabilization of Eternally Frozen Grounds of Foundations of Objects of "the Zapolyarie - NPS Pur-Pe" Pipeline System
  • UDC 624.139.7:622.692.472
    Yuriy V. LISIN, Anatoly E. SOSHENKO, Vyacheslav V. PAVLOV, Andrey V. KORGIN, Vitaly I. SURIKOV
    Abstract. Technical solutions for the thermal stabilization of the grounds of foundations of the oil trunk pipeline "Zapolyarie - NPS Purpe", which is laid on the eternally frozen grounds are considered. The description of measures for the thermal stabilization, substantiation and methods for fixing of technical solutions which ensure the maintenance of the First (I) and the Second (II) principles of applying the eternally frozen grounds as the construction foundations are presented. According to the regulations 25.13330.2012, they apply both to the linear oil pipeline and to the site facilities ( buildings and installations).
    Key words: oil trunk pipelines, eternally frozen grounds, seasonally functioning cooling facilities, ground heat stabilizers, pile foundations.
  • REFERENCES
    1. Rukovodstvo po proektirovaniyu osnovaniy i fundamentov na vechnomerzlykh gruntakh. Moscow, Stroyizdat Publ., 1980. (In Russian).
    2. RSN 67-87. Inzhenernye izyskaniya dlya stroitel'stva. Sostavlenie prognoza izmereniy temperaturnogo rezhima vechnomerzlykh gruntov chislennymi metodami. (In Russian).
    3. Khrustalev L. N. Osnovy geotekhniki v kriolitozone. Moscow, Moscow St. Univ. Publ., 2005, 544 p. (In Russian).
    4. Karnaukhov N. N. Mekhanika merzlykh gruntov i printsipy stroitel'stva neftegazovykh ob"ektov v usloviyakh Severa. Moscow, TsentrLitNefteGaz Publ., 2008, 432 p. (In Russian).
    5. Porkhaev G. V., Shchelokov V. K. Prognozirovanie temperaturnogo rezhima vechnomerzlykh gruntov na zastraivaemykh territoriyakh. Leningrad, Stroyizdat Publ., 1980. 112 p. (In Russian).
    6. Strizhkov S. N. Snizhenie tekhnogennogo vozdeystviya zdaniy i sooruzheniy na gruntovye osnovaniya i ikh geomonitoring v kriolitozone. Promyshlennoe i grazhdanskoe stroitel'stvo, 2013, no. 11, pp. 8-12. (In Russian).
  • ENERGY RESOURCE SAVING
  • Modern Energy Saving Solutions of Engineering Systems for Roadside Stations
  • UDC 697.9:725.31
    Dmitry V. KAPKO
    Abstract. The design solutions of systems of heat and cold supply, heating, cooling and ventilation of road side stations of the Moscow Little Ring Railway are presented. Principal solutions of engineering systems, their efficiency and pay-back time are expounded. Actual design solutions which are an example of embodiment of modern energy efficient construction are presented. The system of heat and cold supply with using ground heat pumps which use the low-potential renewable energy source (ground) as a source of heat and cold is described. Advantages of floor radiant panel heating and cooling systems are disclosed; properties of the self-regulation and energy accumulation are explained. A schematic diagram and principle of operation of the adaptive ventilation adjustable depending on the carbon dioxide concentration are presented.
    Key words: heat and cold supply, floor heating, floor cooling, adaptive ventilation, concentration of carbon dioxide, design solutions.
  • REFERENCES
    1. Babiak J., Olesen B.W., Petras D. REHVA guide book no. 7: Low temperature heating and high temperature cooling. Brussels : Federation of European Heating and Air-conditioning Associations (Rehva), 2007.
    2. Naumov A. L., Kapko D. V., Efremov V. V., Budza A. O. Osnovnye napravleniya povysheniya energoeffektivnosti sistem ventilyatsii i konditsionirovaniya vozdukha. Promyshlennoe i grazhdanskoe stroitel'stvo, 2013, no. 6, pp. 56-59. (In Russian).
    3. Naumov A. L., Kapko D. V. Rezul'taty eksperimental'nykh issledovaniy sistemy lokal'nogo konditsionirovaniya vozdukha v administrativnykh zdaniyakh. Promyshlennoe i grazhdanskoe stroitel'stvo, 2013, no. 4, pp. 17-19. (In Russian).
    4. Van Egeraat E., Hausladen G., Naumov A. L. Proekt Korporativnogo universiteta Sberbanka na Istre. AVOK, 2013, no. 4, pp. 40-46. (In Russian).
  • NEW TECHNOLOGIES, EQUIPMENT, MATERIALS
  • Improving the Structure of Cement Systems
  • UDC 691.31:678.04
    Sergey V. DUDYNOV, Denis Yu. ALEKSANDROV, Anastasiya A. KOSTRYUKOVA, Evgeniya A. ZHURAVLEVA
    Abstract. The information on changing of cement systems properties as a result of their coupling with SiO2 powder and a plasticizer is presented. High-dispersed silica, irrespective of its amorphous or crystalline structure, chemically reacts with Ca(OH)2 which exudes during the hydration of the cement clinker minerals at normal pressure and low temperature. During the reaction, more stable compounds (in comparison with the initial calcium hydroxide) and more dense structure of material with improved performance characteristics are formed. A plasticizer, a substance from the group of natural proteins, is obtained with the use of biotechnological methods. The synthesis is carried out in the course of cultivation of the microbial population on the synthetic nutrient medium in the mode of swing. The compounds additionally introduced into the cement compositions do not have time restrictions (they belong to renewable products). Besides, these compounds belong to environmentally friendly products, so parts, products and designs molded from these materials can be used both in industrial and housing construction without any limitations.
    Key words: highly dispersed silica, plasticizer - compound from a group of natural proteins, biotechnological methods, ecological safety.
  • REFERENCES
    1. Ur'ev N. B. Vysokokontsentrirovannye dispersnye sistemy. Moscow, Khimiya Publ., 1980, 319 p. (In Russian).
    2. Ramachandran V. S., Fel'dman R. F., Kollepardi M., et. al. Dobavki v beton. Moscow, Stroyizdat Publ., 1988, 575 p. (In Russian).
    3. Ayzenshtadt A. M., Makhova T. A., Frolova M. A., et. al. Proektirovanie sostava nano- i mikro- strukturirovannykh stroitel'nykh kompozitsionnykh materialov. Promyshlennoe i grazhdanskoe stroitel'stvo, 2012, no. 10, pp. 14-18. (In Russian).
    4. Dem'yanova V. S., Kalashnikov V. I., Il'ina I. E. Sravnitel'naya otsenka vliyaniya otechestvennykh i zarubezhnykh superplastifikatorov na svoystva tsementnykh kompozitsiy. Stroitel'nye materialy, 2002, no. 9, pp. 4-6. (In Russian).
    5. Tkach E. V., Oreshkin D. V., Semenov V. S., Gribova V. S. Tekhnologicheskie aspekty polucheniya vysokoeffektivnykh modifitsirovannykh betonov zadannykh svoystv. Promyshlennoe i grazhdanskoe stroitel'stvo, 2012, no. 4, pp. 65-67. (In Russian).
    6. Falikman V. R. Nanomaterialy i nanotekhnologii v sovremennykh betonakh. Promyshlennoe i grazhdanskoe stroitel'stvo, 2013, no. 1, pp. 31-34. (In Russian).
    7. Voronin V. V., Panchenko A. I., Solov'ev V. N. Tyazhelye betony s povyshennymi fiziko-mekhanicheskimi svoystvami . Promyshlennoe i grazhdanskoe stroitel'stvo, 2012, no. 3, pp. 64-65. (In Russian).
    8. Batrakov V. G. Modifitsirovannye betony. Teoriya i praktika. Moscow, Tekhnoproekt Publ., 1998. 768 p. (In Russian).
    9. Kaprielov S. S., Sheynfel'd A. V., Kardumyan G. S. Unikal'nye betony i opyt ikh realizatsii v sovremennom stroitel'stve. Promyshlennoe i grazhdanskoe stroitel'stvo, 2013, no. 1, pp. 42-44. (In Russian).
    10. Falikman V. R., Vayner A. Ya., Bashlykov N. F. Novoe pokolenie superplastifikatorov. Beton i zhelezobeton, 2000, no. 5, pp. 5-7. (In Russian).
    11. Ses'kin I. E., Baranov A. S. Vliyanie superplastifikatora S-3 na formirovanie prochnosti pressovannogo betona. Stroitel'nye materialy, 2013, no. 1, pp. 32-33. (In Russian).
  • High-Refractory Heat-Resistant Concrete with a Nano-Dispersed Binder
  • UDC 666.974.2
    Adilbiy B. TOTURBIEV, Valeriya V. STROKOVA, Nazhmudin B. MUSADZHIEV, Batyrby D. TOTURBIEV
    Abstract. The results of complex physical-chemical, thermo-mechanical and other studies of high-refractory, nano-structured silicon carbide concrete with the use of nano-dispersed poly-silicate sodium as a binder are presented. In this case, the formation of concreting tumors in the structure of silicon carbide concrete from poly-silicate sodium fundamentally differs from the formation of a sodium silicate binding film and is characterized by low oxidability, high water resistance, heat stability, and application temperature.
    Key words: poly-silicates, nano-structured and nano-dispersed composite, heat resistant concrete, silicates.
  • REFERENCES
    1. Voytovich V. A. Nanonauka, nanotekhnologii, stroitel'nye nanomaterialy. Available at: http://interlibrary.narod.ru/ GenCat/GenCat.Scient.Dep/GenCatArch) (accessed 04.06.2013). (In Russian).
    2. Ayler R. Khimiya kremnezema. Moscow, Mir Publ., 1982. Part 1, 416 p. (In Russian).
    3. Toturbiev A. B. Issledovaniya kleyashchey sposobnosti kompozitsionnogo svyazuyushchego na polisilikatakh natriya. Promyshlennoe i grazhdanskoe stroitel'stvo, 2012, no. 3, pp. 59-61. (In Russian).
    4. Toturbiev B. D., Toturbiev A. B. Karbidkremnievyy zharostoykiy beton s nizkoy okislyaemost'yu. Beton i zhelezobeton, 2010, no. 6, pp. 2-4. (In Russian).
    5. Korneev V. I., Danilov V. V. Rastvorimoe i zhidkoe steklo. Sankt Peterburg, Stroyizdat Publ., 1996, 23 p. (In Russian).
    6. Pesternikov G. N., Maksyutin A. S., Puchkov S. P., Obukhova V. B. Sposob polucheniya polisilikatov natriya (varianty). Patent Rossii 2124475. 1999. Byul. no. 1.
    7. Toturbiev B. D. Stroitel'nye materialy na osnove silikat-natrievykh kompozitsiy. Moscow, Stroyizdat Publ., 1988, 208 p. (In Russian).
  • FOREIGN EXPERIENCE
  • Methods and Diagnostic Equipment of Water Supply and Water Disposal Networks
  • UDC 621.644
    Vladimir A. ORLOV, Irina S. DEJINA
    Abstract. Innovative technologies of pipeline diagnostics which make it possible, on the basis of optical approximation with the subsequent increase of the image, to get the full picture of technical conditions of engineering networks for decision-making on their renovation or relaying depending on the type of damage. The essence of audio-video diagnostic technology which makes it possible to detect possible failures in the pipeline network without suspending their operation is described.
    Key words: diagnostics, pipelines, devices, damages, repair.
  • REFERENCES
    1. Khramenkov S. V., Orlov V. A., Kharkin V. A. Technology Pipeline Rehabilitation Trenchless Methods. Moscow. Stroiizdat Publ., 2004. 240 p. (In Russian).
    2. Salvo P. Condition Assessment Tools for Potable Water and Mains Sewer Pipes. International No-Dig 2012. Sao Paulo. Brasil, 12-14 November 2012.
    3. Khramenkov S. V. Modernization Strategy Water Network. Moscow. Stroyizdat Publ., 2005. 398 p. (In Russian).
    4. Bracken M. A new survey method to non destructively assess pipe wall condition and system leakage. Proceedings of No-Dig Show 2010. Chicago (USA).