Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) ÝÓ ´ŰÓ˛˘ţ­ýň Web of Science

Contents of issue ╣ 12 (december) 2013

  •  
  • Modern Concept of a Normative Document in the Field of Metal Construction
  • UDC 691.714(083.75)
    Nikolay I. PRESNYAKOV, Yury I. KUDISHIN
    Abstract. At present, computer means are widely used for designing of building objects. But the existing normative base does not contain sufficient juridical and scientific-technical grounds for using modern computer technologies. An analogue situation is observed in provisions of the Eurocodes. Most often the computer is used as a calculator for realization of algorithms of manual computation in accordance with methods SNiP and Eurocodes while with the help of computers it is relatively easy to realize fundamental developments of the deformable solid mechanics that makes it possible to obtain a new level of information on operation of building structures at the designing stage. A draft new set of rules for designing light-weight thin-walled metal structures on the basis of the use of modern computer means is developed at ZAO "MelnikovTsNIIPSK".
    Key words: normative documents, designing, computer technologies, light-weight thin-walled steel structures, adjusted calculation, ultimate bearing capacity.
  • REFERENCES
    1. EN 1993-1-1:2005. Proektirovanie stal'nykh konstruktsiy. Obshchie pravila i pravila dlya zdaniy. (In Russian).
    2. EN 1993-1-3:2006. Proektirovanie stal'nykh konstruktsiy. Obshchie pravila. Dopolnitel'nye pravila dlya kholodnoformovannykh elementov i profilirovannykh listov. (In Russian).
    3. Malkin I. G. Teoriya ustoychivosti dvizheniya. Moscow, Nauka Publ., 1966. 531 p. (In Russian).
    4. Demidovich B. P. Lektsii po matematicheskoy teorii ustoychivosti. Moscow, Nauka Publ., 1967. 472 p. (In Russian).
  • Development of National and Interstate Normative Technical Base in Metal Construction with Due Regard for the Second Generation of Eurocodes
  • UDC 691:699.8:624.01(083.75)
    Nikolay I. PRESNYAKOV, Vladimir K. VOSTROV, Vladimir E. ABSIMETOV
    Abstract. On the basis of an analysis of the second generation of Eurocodes problems and tasks of their harmonization with national normative-technical bases of Russia and Kazakhstan are assessed. It is shown, that the second generation of the Eurocodes has a number of shortcomings which does not make it possible to use them throughout the territory of Russia and Kazakhstan, but they can be used to develop and improve the national and interstate systems of normative-technical documents for construction. A number of normative documents for Russian, Kazakhstan and interstate systems of building norms in metal construction which it is necessary to develop with due regard for the Eurocodes and in which it is necessary to include design emergency situations are proposed.
    Key words: building norms, Eurocodes, metal construction, development of norms, emergency situations, emergency loads, mechanical safety, strength, stability.
  • REFERENCES
    1. Barinova L. S., Pugachyev S. V. Tekhnicheskoe regulirovanie v stroitel'stve segodnya. Standarty i kachestvo, 2011, no.10, pp. 52-56. (In Russian).
    2. Abakanov M. S. O reformirovanii sistemy tekhnicheskogo regulirovaniya stroitel'noy otrasli Respubliki Kazakhstan. Mezhd. nauch. konf. "Aktual'nye problemy primeneniya Evrokodov i natsional'nykh standartov v stroitel'stve na territorii RF i stran ES". Moscow, MGSU, 2012, pp. 8-13. (In Russian).
    3. Absimetov V. E., Mardanov A. K. Evrokod: da ili net. Mezhd. nauch.-tekhn. konf. "Promyshlennoe i grazhdanskoe stroitel'stvo v sovremennykh usloviyakh", Moscow, MGSU, 2011. pp. 13-14. (In Russian).
    4. Presnyakov N. I. Opyt raboty kollektiva ZAO "TsNIIPSK im. Mel'nikova" po sozdaniyu otechestvennykh normativnykh dokumentov na osnove Evrokodov. Aktual'nye problemy primeneniya Evrokodov i natsional'nykh standartov v stroitel'stve na territorii RF i stran ES : sb. tr. Mezhd. nauch. konf. Moskow, 21-22 noyabrya 2012 g. pp. 126-132. (In Russian).
    5. Vostrov V. K., Presnyakov N. I. Aktualizatsiya stroitel'nykh norm i mekhanicheskaya bezopasnost' stroitel'nykh konstruktsiy. Promyshlennoe i grazhdanskoe stroitel'stvo, 2011, no. 6, pp. 6-10. (In Russian).
    6. Vostrov V. K., Beresnev A. V. Aktualizatsiya SNiP 2.06.04-82* i nekotorye stroitel'nye problemy Rossiyskogo shel'fa. Promyshlennoe i grazhdanskoe stroitel'stvo, 2011, no. 9, pp. 60-64. (In Russian).
    7. Nazarov Yu. P., Gorodetskiy A. S., Simbirkin V. N. K probleme obespecheniya zhivuchesti stroitel'nykh konstruktsiy pri avariynykh vozdeystviyakh. Stroitel'naya mekhanika i raschet sooruzheniy, 2009, no. 4, pp. 5-9. (In Russian).
    8. K razrabotke listovogo prokata stali dlya konstruktsiy vertikal'nykh stal'nykh tsilindricheskikh rezervuarov khraneniya nefti i nefteproduktov. L. I. Gladshteyn, V. K.Vostrov, I. F. Pemov, E. V. Yakushev. Metallurg, 2013, no. 2, pp. 77-76. (In Russian).
  • Influence of Chemical and Structure Inhomogeneities of Steel S420NL on Mechanical Properties of Plate Iron
  • UDC 624.014.2:691.53
    Vitaly M. GORITSKY, Georgy R. SHNEYDEROV, Andrey M. KULEMIN
    Abstract. The chemical and structure inhomogeneities of steel S420NL and their influence of mechanical properties of plate iron of 50 mm thickness used for metal structures of the central atrium of the Federation Tower complex are investigated. Metal is characterized by high complex of mechanical properties for all three rolling directions and guarantees the yield point not less than 390 MPa. The relative contraction of rolled metal thickness corresponds to the quality group Z35 according to GOST 28870 ensuring in welded joints the absence of delamination in the zone of axial center-line segregation.
    Key words: chemical and structure inhomogeneities of steel, structural steel, plate iron, crack resistance, relative contraction of rolled metal thickness.
  • REFERENCES
    1. Vedyakov I. I., Odesskiy P. D. Stali tret'ego pokoleniya dlya stroitel'stva metallicheskikh konstruktsiy. Promyshlennoe i grazhdanskoe stroitel'stvo, 2013, no. 7, pp. 23-28. (In Russian).
    2. O primenenii novykh staley v unikal'nykh metallicheskikh konstruktsiyakh. I. I. Vedyakov, P. D. Odesskiy, K. Forkhaym, V. Yu. Kulik. Promyshlennoe i grazhdanskoe stroitel'stvo, 2011, no. 6, pp. 66-70. (In Russian).
    3. Goritskiy V. M., Khromov D. P. Otsenka soprotivleniya rasprostraneniyu treshchiny po rezul'tatam ispytaniy na udarnuyu vyazkost'. Zavodskaya laboratoriya,1984, no. 7, pp. 70-72. (In Russian).
    4. Goritskiy V. M., Kulyemin A. M., Lushkin M. A. Analiz strukturnykh faktorov udarnoy vyazkosti vysokoprochnoy tolstolistovoy stali 16G2AF dlya konstruktsiy otvetstvennogo naznacheniya. Promyshlennoe i grazhdanskoe stroitel'stvo, 2011, no. 7, pp. 34-36. (In Russian).
  • Improving the Method for Calculation Assessment of Fatigue Life of Steel Building Structures Elements on the Basis of Comparison of Russian and European Standards with Eurocodes
  • UDC 624.014.2.042(083.75)
    Vladimir V. EVDOKIMOV
    Abstract. A critical analysis of the calculation assessment method of fatigue life and durability of steel building structures elements set forth in Russian normative documents and Eurocode EN 1993-1-9:2005 is made. Comparison of calculation results done by different methods with data obtained in the course of tests of welded joints of structures elements under conditions of cyclic loading is made. Proposals for improving the calculation method of fatigue life of steel building structures cyclically loaded are presented.
    Key words: calculation, fatigue life, durability, connections, steel building structures, comparison of Russian and European standards.
  • REFERENCES
    1. Evdokimov V. V., Shcherbakov E. A. K voprosu povysheniya raschetnoy dolgovechnosti elementov konstruktsii podkranovykh balok. Promyshlennoe i grazhdanskoe stroitel'stvo, 2008, no. 5, pp. 28-30. (In Russian).
    2. STO 02494680-0049-2005. Standart organizatsii. Konstruktsii stal'nye stroitel'nye. Osnovnye printsipy rascheta na prochnost', ustoychivost', ustalost-nuyu dolgovechnost' i soprotivlenie khrupkomu razrusheniyu. ZAO "TsNIIPSK im. Mel'nikova". Moscow, 2005. 32 p. (In Russian).
    3. EN 1993-1-9:2005. Evrokod 3: Proektirovanie stal'nykh konstruktsiy. Part 1-9. Ustalostnaya prochnost'.
    4. Prochnost' svarnykh soedineniy pri peremennykh nagruzkakh. Pod red. V. I. Trufyakova. Kiev, Naukova dumka Publ., 1990. 256 p. (In Russian).
    5. Kogaev V. P., Makhutov N. A., Gusenkov A. P. Raschety detaley mashin i konstruktsiy na prochnost' i dolgovechnost'. Moscow, Mashinostroenie Publ., 1985. 224 p. (In Russian).
  • Basis of Calculation of Metal Structures Fire Resistance by Methods of Eurocodes
  • UDC 624.014.2.042:699.81(083.75)
    Alexander R. TUSNIN, Alexander I. DANILOV
    Abstract. The inclusion of the Eurocodes in Russian design practice requires a careful study of the principles and rules set forth in the normative documents and appropriate manuals of European authors. The use of sections of the Eurocodes, dedicated to the fire resistance, is caused by absence of relevant sections in the domestic construction standards. Having studied the regulatory approaches to calculation and design of fire resistance of metal structures, it can be concluded that the Eurocodes contain both approximate engineering methods and recommendations on the precise calculation of fire resistance.
    Key words: Eurocodes, fire safety, fire resistance, criterion, thermal properties.
  • REFERENCES
    1. Roytman V. M. Inzhenernye resheniya po otsenke ognestoykosti proektiruemykh i rekonstruiruemykh zdaniy. Moscow, Assotsiatsiya "Pozharnaya bezopasnost' i nauka" Publ., 2001. 382 ­. (In Russian).
    2. EN 1993-1-2:2005. Proektirovanie stal'nykh konstruktsiy. Part 1-2. Proektirovanie konstruktsiy s uchetom ognestoykosti. (In Russian).
    3. EN 1999-1-2:2007. Proektirovanie alyuminievykh konstruktsiy. Part 1-2. Proektirovanie konstruktsiy s uchetom ognestoykosti. (In Russian).
    4. Rukovodstvo dlya proektirovshchikov k EN 1991-1-2, EN 1992-1-2, EN 1993-1-2, EN 1994-1-2 : spravochnik po proektirovaniyu protivopozharnoy zashchity stal'nykh, stalezhelezobetonnykh i betonnykh konstruktsiy zdaniy i sooruzheniy v sootvetstvii s evrokodami (per. s angl.). Moscow, Moscow St. Univ. of Civil Engineering Publ., 2012. 196 p. (In Russian).
  • Analysis of Comparison of Calculations of Structural Elements of an Industrial Building Frame According to Russian and European Standards
  • UDC 624.072.33.04(083.75)
    Natalia Ju. SIMON
    Abstract. An analysis of computations of a cross frame (a basic structural element of an industrial building with bridge cranes) is made with the use of Russian and European standards. The principal differences between two standard systems in the determination of snow and wind loadings and their influence on the computation results are shown.
    Key words: computation of steel structures, cross frame, structural elements of frame, snow loading, wind loading, Russian standards, European standards.
  • REFERENCES
    1. Natsional'noe prilozhenie k Evrokodu 1990. Osnovy proektirovaniya sooruzheniy.
    2. Natsional'noe prilozhenie k Evrokodu EN 1991-1-3. Evrokod 1: Vozdeystviya na sooruzheniya. Part 1-3: Osnovnye vozdeystviya - snegovye nagruzki.
    3. EN 1991-1-3 Evrokod 1: Vozdeystviya na sooruzheniya. Part 1-3. Osnovnye vozdeystviya - snegovye nagruzki.
    4. Natsional'noe prilozhenie k Evrokodu EN 1991-1-4. Evrokod 1: Vozdeystviya na sooruzheniya. Part 1-4. Osnovnye vozdeystviya - vetrovye vozdeystviya.
    5. EN 1991-1-4 Evrokod 1 : Vozdeystviya na sooruzheniya. Part 1-4. Osnovnye vozdeystviya - vetrovye vozdeystviya.
    6. NSR EN 1991-3-2011 Evrokod 1 : Vozdeystviya na sooruzheniya. Part 3: Vozdeystviya ot kranov i mekhanicheskogo oborudovaniya.
  • Prospects of the Use of Roll Techniques for Production of Some Types of Steel Structures
  • UDC 691.714-418
    Bogdan V. POPOVSKY
    Abstract. Since the 1950s, the method of construction of tanks with the use of factory rolled structures became widespread in our country and abroad. This technique is used for manufacturing of rolled strips not only for tanks but also for designs of large-span coverings and in shipbuilding. The article proposes to use this technique also for construction of rapidly erected (unrolled) protective constructions in the course of liquidation of natural disasters and in other emergency situation. It can be unrolled sheet enclosures of embankments, limitation of water spaces in the case of their pollution with oil spill, protection of bridge piers during the ice drift etc.
    Key words: rolled sheet structures, steel tanks, rapidly erected protective devices, protection against natural disasters.
  • REFERENĐES
    1. Raevskiy G. V. Izgotovlenie stal'nykh vertikal'nykh tsilindricheskikh rezervuarov metodom svorachivaniya. Moscow, Gostoptekhizdat Publ., 1952. 200 p. (In Russian).
    2. Raevskiy G. V., Popovskiy B. V. Iz opyta vnedreniya novoy tekhnologii rezervuarostroeniya. Sbornik instituta elektrosvarki im. E. O. Patona AN USSR. Kiev, 1954, pp. 62-66. (In Russian).
    3. Popovskiy B. V. Chto daet rulonirovanie. Ekonomika stroitel'stva, 1965, no. 5, pp. 12-14. (In Russian).
    4. Doroshenko F. E. Osobennosti prodleniya resursa rezervuarov RVSPK 50 000. Promyshlennoe i grazhdanskoe stroitel'stvo, 2006, no. 6, pp. 17-18. (In Russian).
    5. Popovskiy B. V. Belyaev B. F. Mezhdunarodnaya konferentsiya po rezervuarostroeniyu. Montazhnye i spetsial'nye raboty v stroitel'stve, 2008, no. 4, pp. 21-23. (In Russian).
  •  
  • Regularities of Processes of Concrete Leaching in the Course of Filtration
  • UDC 691.32:620.193.001.5
    Boris V. GUSEV, Alexander S. FAYVUSOVICH, Svetlana I. LEVADNAYA
    Abstract. Results of the experimental study of leaching processes during the filtration are expounded. The study methodology is based on the analytic solution of the leaching problem constructed with the use of Darcy's and Fick's laws and with due regard for phase transitions. Basic regularities of the process are established; conditions under which the diffusion or filtration transfer is a limiting one are determined. The results obtained can be used for prediction of durability of concretes operating in aggressive media.
    Key words: concrete leaching, filtration, limiting stage.
  • REFERENCES
    1. Alekseev S. N., Ivanov F. M., Modry N., Shissl' P. Dolgovechnost' zhelezobetona v agressivnykh sredakh. Moscow, Stroyizdat Publ., 1990. 320 p. (In Russian).
    2. Stukachenko P. P. , Kholoshin E. P., Antropova V. A. Dolgovechnost' gidrotekhnicheskikh sooruzheniy na poberezh'e Dal'nego Vostoka. Vladivostok, Rotaprint Dal'NIISa Pabl. 1987. 78 p. (In Russian).
    3. Levadnaya S. I., Fayvusovich A. S., Snisarenko V. I. Prognozirovanie dolgovechnosti betona plotin GES pri fil'tratsii. Naukoviy v_snik LNAU. Ser. Tekhn_chn_ nauki, 2010, no. 14, pp. 238-249. (In Russian).
    4. Moskvin V. M., Alekseev S. N., Ivanov F. M., Guzeev E. A. Korroziya betona i zhelezobetona, metody zashchity. Moscow, Stroyizdat Publ., 1980. 536 p. (In Russian).
    5. Plugin A. A. Fiziko-khimicheskaya model' dolgovechnosti betona i zhelezobetona. Problemi nad_ynost_ _ dovgov_chnost_ _nzhenernikh sporud ta bud_vel' na zal_znichnomu transport_. Vip. 77. Khark_v, UkrDAZT Publ., 2006. pp. 104-119. (In Russian).
    6. Rasskazchikov V. A., Ulyashevskiy V. A. Fiziko-mekhanicheskie kharakteristiki i mekhanizm vyshchelachivaniya betona v zone treshchin zhelezobetonnykh oblitsovok turbinnykh vodovodov Sayano-Shushenskoy GES. Gidrotekhnicheskoe stroitel'stvo, 2008, no. 7, pp.17-25. (In Russian).
    7. Rubetskaya T. V., Bubnova L. S. Skorost' korrozii 1 vida v nekotorykh konstruktsiyakh. Korroziya betona v agressivnykh sredakh. Moscow, NIIZhB, Stroyizdat Publ., 1971, pp. 30-35. (In Russian).
    8. Elbakidze M. G. Fil'tratsiya vody cherez beton i betonnye gidrotekhnicheskie sooruzheniya. Moscow, Energoatomizdat Publ., 1988. 103 p. (In Russian).
    9. Dams in a European contex: proceedings of the JCOLD European Symposium, 25 to 27 June 2001. Edited: G. H. Midttomme, B. Honningsvag, K. Repp, K. Vaskinn, T. Westeren. 2001. 544 p.
    10. Ekstr÷m T. Leaching of Concrete. Lund Institute of Technology. 2001 p. 229.
    11. Evans I. The effect of Concrete Leaching of the pH of Rivers and Streanis. School of the Built Environment. Heriot-Watt University. 2011. p. 87-150.
    12. Fagerlund G. Leaching of Concrete. The leaching process. Extrapolation of deteration Effect on the structural stability. Lund Institute of Technology. Lund University. Lund, 2000. 60 p.
    13. Faucon P., Gerard B., Iacguinot I., Marchand I. Leaching of Cement: studi of the surface layer. Cement and Concrete Research, 1996, vol. 26, no11. pp. 1707-1715.
    14. Gawin D., Pesavento F., Schrefler B. A. Modeling deteration of cementitions materials exposed to calcium leaching in mon-isotermal conditions. Computer Methos in Applied Mechanics and Engineering. 2009, vol. 198, issues 37-40, pp. 3051-3083.
    15. Jooss E. M. Leaching of Concrete under Thermal Influece. Otto-Graf-Journal, 2001, vol. 12, pp. 51-68.
    16. Gusev B.V., Faivusovich A.S. Postroenie matematicheskoy teorii protsessov korrozii betona. Stroitelnye materialy, 2008, no. 3, pp. 38-41.
    17. Adenot F., Buil M. Modeling of the corrosion of cement paste by deionized water. Cement and Concrete Researc, 1992, vol. 22, pp. 489-496.
    18. Effects on Radionuclide Concentracions by Cement. Grund-Water. Pacific Northwest National Laboratory Richland, 1998. 142 p.
  • Mathematical Model of Dynamics and Interference of External and Internal Directions in Activity of a Biosphere Compatible City
  • UDC 351.777.8.001.57
    Vyacheslav A. Il'ICHEV, Vitaly I. KOLCHUNOV, Vladimir A. GORDON
    Abstract. The withdrawal of resources from the biosphere and dispersion into it the waste polluting the water, air, soil etc. is considered as the external direction of the city activity; impact on the population (natural environment conditions, assessment of health, life time, human potential etc.) is considered as the internal one. A method of predicting the ecological and demographic situation on the urbanized territory is constructed with the use of the relatively simple, non-linear, simulation model that reflects the interaction of several subsystems such as population, pollution of air and water bodies.
    Key words: biosphere compatible city, air and water bodies pollution, population, simulation model, system of differential equations, predicting the state of the environment.
  • REFERENCES
    1. Regiony Rossii. Sotsial'no-ekonomicheskie pokazateli 2012 g. Moscow, Rosstat Publ., 2012. 990 p. (In Russian).
    2. Il'ichev V. A., Kolchunov V. I., Gordon V. A. Metodika prognozirovaniya pokazateley biosferosovmestimosti urbanizirovannykh territoriy. Gradostroitel'stvo, 2010, no. 1, pp. 37-43.(In Russian).
    3. Bespalova D. N., Roshchina Ya. M. Sostoyanie zdorov'ya naseleniya Rossii. Vestnik Rossiyskogo monitoringa ekonomicheskogo polozheniya i zdorov'ya naseleniya NIU VShE. M. : NIU VShE, 2011, pp. 131-143. [Elektronnyy resurs]. URL: www.hse.ru/data/2011/06/27/1215374948 /vestnik_rlms-hse_2011.pdf (accessed 19.08.2013).
    4. Vega A. Yu., Bogomolov S. V. Ekologicheskaya i sotsial'naya sostavlyayushchaya kachestva zhizni naseleniya: teoreticheskie aspekty. Kachestvo i uroven' zhizni naseleniya v sovremennoy Rossii: sostoyanie, tendentsii i perspektivy. Moscow, OOO "M-Studio" Publ., 2012, pp. 45-53.(In Russian).
    5. Il'ichev V. A. Printsipy preobrazovaniya goroda v biosferosovmestimyy i razvivayushchiy cheloveka. Promyshlennoe i grazhdanskoe stroitel'stvo, 2010, no. 6, pp. 3-13. (In Russian).
    6. Slovokhotov Yu. L. Analogi fazovykh perekhodov v ekonomike i demografii. Komp'yuternye issledovaniya i modelirovanie, 2010, vol. 2, no. 2, pp. 209-218. (In Russian).
    7. Korotaev A. V., Malkov A. S., Khalturin D. A. Kompaktnaya matematicheskaya makromodel' tekhniko-ekonomicheskogo i demograficheskogo rosta Mir-sistemy. Istoriya i sinergetika: matematicheskoe modelirovanie sotsial'noy dinamiki. Moscow : Komkniga Pabl., 2005, pp. 46-48. (In Russian).
  • Survivability of Loaded and Corrosion-Damaged Frame-Bar Reinforced Concrete Structures in Case of Sudden Loss of Stability of Bearing Elements
  • UDC 624.012.45.072.04:620.193
    Vitaly I. KOLCHUNOV, Nikolay O. PRASOLOV, Anastasiya S. BUKHTIYAROVA
    Abstract. Calculation dependences and an algorithm for assessment of survivability parameters of reinforced concrete frame-bar in out-of-limit states in the course of loss of stability of bearing elements due to abrupt structural change of such systems. The reliability of these dependences is confirmed by comparison and satisfactory concordance of the calculation results with data of experimental study of reinforced concrete frames.
    Key words: survivability, loss of stability, reinforced concrete structures.
  • REFERENCES
    1. Prochnost i deformativnost zhelezobetonnykh konstruktsiy pri zaproektnykh vozdeystviyakh / G. A. Geniev, V. I. Kolchunov, N. V. Klyueva [et al]. Moscow. ASV Publ., 2004. 216 p. (In Russian).
    2. Kolchunov V. I., Osovskikh E. V. Raschet dinamicheskikh dogruzheniy v elementakh zhelezobetonnykh prizmaticheskikh skladok pri zaproektnykh vozdeystviyakh. Stroitel'stvo i rekonstruktsiya, 2010, no. 3/29, pp. 7-14. (In Russian).
    3. Geniev G. A., Klyueva N. V. K otsenke rezerva nesushchey sposobnosti zhelezobetonnykh staticheski neopredelimykh sterzhnevykh sistem posle zaproektnykh vozdeystviy : sb. dokl. "Kriticheskie tekhnologii v stroitel'stve". Moscow. MGSU Publ., 1998. Pp. 60-67. (In Russian).
    4. Bondarenko V. M., Klyueva N. V. K raschetu sooruzheniy, menyayushchikh raschetnuyu skhemu vsledstvie korrozionnykh povrezhdeniy. Izvestiya vuzov. Stroitel'stvo. 2008, no. 1, pp. 4-12. (In Russian).
    5. Bondarenko V. M., Kolchunov V. I. Kontseptsiya i napravleniya teorii konstruktivnoy bezopasnosti zdaniy i sooruzheniy pri silovykh i sredovykh vozdeystviyakh. Promyshlennoe i grazhdanskoe stroitel'stvo, 2013, no. 2, pp. 28-31. (In Russian).
    6. Klyueva N. V., Androsova N. B. K postroeniyu kriteriev zhivuchesti korrozionno povrezhdaemykh zhelezobetonnykh konstruktivnykh sistem. Stroitel'naya mekhanika i raschet sooruzheniy, 2009, no. 1, pp. 29-34. (In Russian).
    7. Aleksandrov A. V., Travush V. I., Matveev A. V. O raschete sterzhnevykh konstruktsiy na ustoychivost'. Promyshlennoe i grazhdanskoe stroitel'stvo, 2002, no. 3, pp. 16-19. (In Russian).
    8. Geniev A. G. O dinamicheskikh effektakh v sterzhnevykh sistemakh iz fizicheski nelineynykh khrupkikh materialov. Promyshlennoe i grazhdanskoe stroitel'stvo, 1999, no. 9, pp. 23-24. (In Russian).
    9. Kolchunov V. I., Morgunov M. V., Kozharinova L. V., Prasolov N. O. K voprosu algoritmizatsii zadachi rascheta zhivuchesti zhelezobetonnykh konstruktsiy pri potere ustoychivosti. Promyshlennoe i grazhdanskoe stroitel'stvo, 2012, no. 12, pp. 77-79. (In Russian).
    10. Kolchunov V. I., Prasolov N. O., Morgunov M. V. K otsenke zhivuchesti zhelezobetonnykh ram pri potere ustoychivosti otdelnykh elementov. Stroitel'naya mekhanika inzhenernykh konstruktsiy i sooruzheniy, 2007, no. 4, pp. 40-44. (In Russian).
    11. Kolchunov V. I., Kozharinova L. V., Prasolov N. O. Eksperimental'no-teoreticheskie issledovaniya zhivuchesti zhelezobetonnykh ram pri potere ustoychivosti otdel'nogo elementa. Vestnik MGSU, 2011, no. 2, 3, pp. 109-115. (In Russian).
  • Features of Interaction of a Membrane Attached with Eccentricity to Support Contour from Closed Thin-Walled Rectangular Sections
  • UDC 624.074-415
    Alexander R. TUSNIN
    Abstract. Features of the operation of membrane system with eccentric fastening of a thin membrane to the support contour made of thin-walled rectangular profile are considered. It is established, that the use of calculated schemes with simulation of the contour with rod finite elements does not ensure the required accuracy of calculations. Basic geometric and stiffness characteristics defining the distribution of forces and deformations in such design are revealed. Numerical calculations have confirmed the correctness of the derived generalized relative parameters and the possibility of their use for the analysis of the structure operation.
    Key words: membrane structures, thin-walled closed rectangular profile, modeling, rod finite elements.
  • REFERENCES
    1. Vlasov V. Z. Tonkostennye uprugie sterzhni. Moscow, Fizmatgiz Publ., 1959. 568 p. (In Russian).
    2. Filatov V. N., Abromimov A. A. Matematicheskoe modelirovanie napryazhenno-deformirovannogo sostoyaniya gibkikh obolochek, zhestko zadelannykh po konturu. Modelirovanie i raschet stroitel'nykh konstruktsiy. Inzhenerno-stroitel'nyy zhurnal, 2011, no. 3 (21), pp. 28-31. (In Russian).
    3. Karpov V. V., Goryachevskikh A. V. Sistemy approksimiruyushchikh funktsiy pri razlichnykh sposobakh zakrepleniya kontura obolochki. Promyshlennoe i grazhdanskoe stroitel'stvo, 2012, no. 2, pp. 23-24. (In Russian).
    4. Bychkov D. V. Raschet balochnykh i ramnykh sistem iz tonkostennykh elementov. Moscow, Stroyizdat Publ., 1948. 23 p. (In Russian).
    5. Kornishin M.S. Nelineynye zadachi teorii plastin i pologikh obolochek i metody ikh resheniya. Moscow, Nauka Publ., 1964. 191 p. (In Russian).
    6. Brudka Ya., Lubin'ski M. Legkie stal'nye konstruktsii. Moscow, Stroyizdat Publ., 1974. 125 p. (In Russian).
  • Method of Physical Models of Reinforced Concrete Resistance
  • UDC 624.012.045
    Vladimir I. KOLCHUNOV, Igor A. YAKOVENKO, Nataliya V. KLYUEVA
    Abstract. The calculation method in the form of physical models of resistance which makes it possible to assess the durability, inflexibility and cracks resistance of reinforced concrete structures with due regard for physical, geometrical and structural non-linearity, multilevel processes of cracks formation at incompatible deformations of concrete and reinforcement and also disturbance of material continuity is offered. The choice of a certain order of solution of crack resistance and rigidity problems with due regard for the compliance of longitudinal and transverse connections in a composite rod makes it possible to exclude the differential equations of high-order.
    Key words: reinforced concrete constructions, physical models of resistance, mechanics of destruction, mechanics of reinforced concrete.
  • REFERENCES
    1. Bondarenko V. M., Kolchunov V. I. Kontseptsiya i napravleniya razvitiya teorii konstruktivnoy bezopasnosti zdaniy i sooruzheniy pri silovykh i sredovykh vozdeystviyakh. Promyshlennoe i grazhdanskoe stroitel'stvo, 2013, no. 2, pp. 28-31. (In Russian).
    2. Bondarenko V. M., Kolchunov V. I. Raschetnye modeli silovogo soprotivleniya zhelezobetona. Moscow, ASV Publ., 2004. 472 p. (In Russian).
    3. Prochnost' zhelezobetonnykh konstruktsiy po naklonnym treshchinam tret'ogo tipa. Kh. Z. Bashirov, V. S. Fedorov, Vl. I. Kolchunov, K. M. Chernov. Vestnik grazhdanskikh inzhenerov, 2012, no. 5 (34), pp. 50-54. (In Russian).
    4. Kolchunov Vl. I., Klyueva N. V., Bukhtiyarova A. S. Soprotivlenie prostranstvennykh uzlov sopryazheniya zhelezobetonnykh karkasov mnogoetazhnykh zdaniy pri zaproektnykh vozdeystviyakh. Stroitel'stvo i rekonstruktsiya, 2011, no. 5, pp. 21-32.
    5. Kolchunov V. I., Yakovenko I. A., Klyueva N. V. Komp'yuternaya realizatsiya metoda fizicheskikh modeley soprotivleniya zhelezobetona. Perspektivy razvitiya programmnykh kompleksov dlya rascheta nesushchikh sistem zdaniy i sooruzheniy, 2013, pp. 37-50.
  •  
  • Dwelling Evolution under Present-Day Conditions
  • UDC 728.1.012
    Kira K. KARTASHOVA
    Abstract. Results of the study of evolution of typology, structure, shape, composition, premises composition and location of the dwelling system in the structure of urban development during the recent decades actively changing the existing averaged solutions and depending on economic and social differentiation of population are presented. Market relations make it possible to retreat from limitation of standards and averaged solutions and favour the development of types and forms of dwelling, increase of its elements, and complexity of its structure, improvement of quality and comfort, individual approach to the customer.
    Key words: evolution of dwelling typology, social changes in society, level of population welfare level, economic differentiation of population, dwellings system.
  • REFERENCES
    1. Grigor'ev Yu. P. Zadachi i problemy razvitiya massovogo zhilishcha v Moskve. Promyshlennoe i grazhdanskoe stroitel'stvo, 2007, no. 3, pp. 43-46. (In Russian).
    2. Dedyukhova I. A. Gosudarstvennaya zhilishchnaya politika k nachalu reformirovaniya. URL: http: // deduhova.ru / modernmacro / homepolit.htm (accessed 11.10.2013).
    3. Apter M. Kibernetika i razvitie. Moscow, Mir Publ., 1970. 215 p. (In Russian).
  • Modern Urban Planning: Correlation of Rationally Regulated and Elemental
  • UDC 711.424
    Igor P. PRYADKO
    Abstract. The assessment of the following urban development trends as de-urbanization, de-industrialization, comprehensive planning, legal regulation of economic problems, and conversion of urban industrial enterprises is offered. Present-day social phenomena are assessed using the A. Schaff's automatic society concept. Examples illustrating the history of urban civilization are presented; in particular, it is told about the combination of centralized urban management and spontaneity typical for the public life of ancient urban settlements of the Middle East. From the position of the automatic society concept the author assesses such phenomena as migration to suburbs, accumulation of ecological problems, social segregation and some others taking place in urban life. Considering the eco-villages aspects in urban planning, the author proceeds from the fact that changes in the urban environment are the least predictable side of the urban life dynamics.
    Key words: automatic society, architectonics, migration to suburbs, urbanization, conversion of industrial enterprises in megalopolises.
  • REFERENCES
    1. Bell D. Gryadushchee postindustrial'noe obshchestvo. Moscow, Academia Publ., 2004. 783 p. (In Russian).
    2. Bell D. Sotsial'nye ramki informatsionnogo obshchestva. Novaya tekhnokraticheskaya volna na Zapade. Moscow, Progress Publ., 1986, pp. 330-342. (In Russian).
    3. Schaff A. Marksizm a jednostka ludzka. Warszawa, 1965. S.171-173.
    4. Ellul J. Le bluff technologique. Paris, Hachette, 1988. 489 p.
    5. Mastera arkhitektury ob arkhitekture. Izbrannye otryvki iz pisem, statey, vystupleniy i traktatov. Moscow, Iskusstvo Publ., 1972. 610 p. (In Russian).
    6. Platon. Sobr. soch. v 4 vol. Moscow, Mysl' Publ., 1993. Vol. 2, pp. 192-274. (In Russian).
    7. Gutberg I. Rost velikana. Moskovskoe nasledie, 2013, no. 26, pp. 2-5. (In Russian).
    8. Biryukov B. V. Strogost' terminologii i stil' myshleniya. Psikhologiya protsessov khudozhestvennogo tvorchestva, Leningrad, Nauka Publ., 1980, pp. 261-265. (In Russian).
    9. Mastera arkhitektury ob arkhitekture. Moscow, Iskusstvo Publ., 1972. 513 p.
    10. Park R. Gorod kak sotsial'naya laboratoriya. Sotsiologicheskoe obozrenie. 2002, vol. 2, no. 3, p. 4.
    11. V Rossii za god stroyat stol'ko dorog, skol'ko v Kitae za nedelyu. [In Russian]. RL: http://www.bfm.ru/news/ 116515?doctype=article (accessed 20.03.2013).
    12. Gorod i izmeneniya klimata: napravleniya strategii. Global'nyy doklad o naselennykh punktakh 2011 g. Sokrashchennaya versiya. Programma OON po naselennym punktam. London, Vashington, 2011. URL: http//www.un.org /ga/habitat/docs.shtml (accessed 20.03.2013). (In Russian).
    13. Iudin A. A., Shpilev D. A. Sovremennaya nemetskaya sotsiologiya. Problemy razvitiya goroda. N. Novgorod, NISOTs Publ., 2010. 58 p. (In Russian).
    14. V USA predlozhili uprazdnit' gorod Detroyt. URL: http://www.varjag-2007.livegournal.com /4069321.html (accessed 21.03.2013).
    15. Garnier T. Une cite industrielle. Vol. 1-2. Paris: Ch Massin Cie, 1932.
    16. Rossiya 2012: stat. spravochnik. Moscow, Rosstat Publ., 2012. 59 p. (In Russian).
    17. Vazhdaeva N. I tak i syak: Itogi, 2012, no. 39, pp. 53-55. (In Russian).
    18. Sakharov A. Postindustrial'nyy gorod. URL: http://www.club2050.ru/2010/04/postindustrial- city (accessed 20.03.2013).
    19. Glazychev V. L. Gorod bez granits. M.: Territoriya budushchego Publ., 2011. 400 p. (In Russian).
    20. Gutnov A., Glazychev V. Mir arkhitektury. Litso goroda. M.: Molodaya gvardiya Publ., 1990. 352 p. (In Russian).
  •  
  • Features of Calculation of Seismic Stability of Large-Panel Buildings
  • UDC 699.841(083.75)
    Sergey G. EMELIANOV, Yury I. NEMCHINOV, Nikolay G. MARYENKOV, Vladimir I. KOLCHUNOV, Igor A. YAKOVENKO
    Abstract. Specified requirements of the codes of European countries, USA, CIS, Canada for ensuring the safety of buildings and structures at earthquakes are analyzed. The methodology based on the non-elastic spectra of buildings reaction which makes it possible to take into account the non-linear behaviour of structures has been developed in elaboration of Eurocode 8 recommendations. Examples of the calculation of non-linear displacements of framed and frameless concrete buildings with application of the proposed methodology are considered.
    Key words: earthquake, building, seismic stability, non-linear spectra of reaction.
  • REFERENĐES
    1. Nemchinov Yu. I. Seysmostoykost' zdaniy i sooruzheniy. Kiev: FOP Gudimenko Publ., 2008. 480 p. (In Russian).
    2. ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings. Vol. 1 and 2, Applied Technology Council. Report no. SSC 96-01, Seismic Safety Commission, Redwood City, CA. November 1996.
    3. FEMA 273. Federal Emergency Management Agency. NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Washington, D.C. October 1997.
    4. FEMA 356. Prestandard and commentary for the seismic rehabilitation of buildings. American Society of Civil Engineers (ASCE), Washington, D.C. November 2000.
    5. FEMA 274. Federal Emergency Management Agency. NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings, Washington, D.C. October 1997.
    6. SEAOC [1995], Structural Engineers Association of California. Vision 2000: A framework for performance-based design, Vol. I-III. Structural Engineers Association of California: Sacramento.
    7. Freeman S. A. (1978) Prediction of Response of Concrete Buildings to Severe Earthquake Motion. Douglas McHenry International Symposium on Concrete Structures, SP-55, American Concrete Institute, Detroit, Michigan, pp. 589-605.
    8. Bab_k K. Ots_nka seysm_chno┐ bezpeki bud_vel', sporud ta konstrukts_y _z zastosuvannyam teor_┐ riziku: avtoref. dis: kand. tekhn. nauk. Kiiv: ND_BK Publ., 2008. 20 p. (In Ukrainian).
    9. Zolotkov A. S. Seysmostoykost' monolitnykh zdaniy Kishineu: Kartya Moldovey, 2000. 284 p. (In Russian).
    10. Zhelezobetonnye steny seysmostoykikh zdaniy: Issledovaniya i osnovy proektirovaniya: Sovm. izd. SSSR-Gretsiya / pod red. G. N. Ashkinadze, M. E. Sokolova. M.: Stroyizdat, 1988. 504 c.
    11. Uzdin A. M., Sandovich T. A., A-N-M. Samikh Amin. Osnovy teorii seysmostoykosti i seysmostoykogo stroitel'stva zdaniy i sooruzheniy. St. Petersburg : VNIIG im. B. E. Vedeneeva, 1993. 176 p. (In Russian).
    12. Chopra A. K. Earthquake dynamics of structures. Second Edition. University of California, Berkeley. 2005. 129 p.
    13. Newmark, N. M., Hall, W. J. Earthquake spectra and design, Earthquake Engineering Research Center. Institute Berkeley, California, 1982.
    14. Ayzenberg Ya. M. Spektry sostoyaniya sistem s degradiruyushchey zhestkost'yu i ikh primenenie dlya otsenki seysmicheskoy reaktsii sooruzheniy. Ekspress-informatsiya VNIIIS. Ser. 14. Seysmostoykoe stroitel'stvo. 1979, vol. 6. pp. 3-9. (In Russian).
    15. K obosnovaniyu metodiki rascheta zhelezobetonnykh zdaniy pri seysmicheskikh vozdeystviyakh na osnove neuprugikh spektrov reaktsii / Nemchinov Yu. I., Khavkin A. K., Mar'enkov N. G. [i dr.]. Bud_vel'n_ konstrukts_┐: M_zhv_domchiy nauk.-tekhn. zb_rnik "Bud_vnitstvo v seysm_chnikh rayonakh Ukra┐ni". Vol. 73. Ki┐v, DP ND_BK, 2011, pp. 571-585. (In Russian).
    16. Peter K., Badoux M. (2000) Application of the Capacity Spectrum Method to R.C. Buildings with Bearing Walls. Proceedings of 12 World Conference on Earthquake Engineering, Auckland, New Zealand, 2000, paper ╣ 0609.
    17. Itskov I. E., Khegay V. D. Vibratsionnye ispytaniya pyatietazhnogo zdaniya iz ob'emnykh blokov. Ekspress-informatsiya. Ser. Seysmostoykoe stroitel'stvo, 1984, pp. 11-14. (In Russian).
  • Fire Resistance Calculation for a Floor Structure with the Use of Profiled Sheeting
  • UDC 69.025.22:691.714
    Alexander R. TUSNIN, Alexander I. DANILOV, Vladimir P. VERSHININ, Vladislav V. VERSHININ
    Abstract. Numerical simulation is performed to define the fire resistance of floor construction with the use of profiled sheeting. During the numerical calculation the non-stationary non-linear heat transfer problem, where non-linearity is caused by temperature-dependent thermal properties of the materials and radiation transfer taken into consideration is solved and the time-dependent temperature fields is determined. The limit of fire resistance of the floor construction with due regard for bearing capacity has been obtained and constructional measures for its improvement are proposed.
    Key words: numerical simulation, fire resistance limit according to bearing capacity, floor construction, profiled sheeting, fire.
  • REFERENCES
    1. Belostotskiy A. M., Dubinskiy S. I., Shcherbina S. V. Chislennoe modelirovanie nestatsionarnykh poley temperatur v stroitel'nykh konstruktsiyakh pri pozharakh. IJCCSE, 2012, vol. 8, no. 3, pp. 68-80. (In Russian).
    2. Ruxollax N. Ognestojkost' monolitnyx karkasnyx zdanij s uchyotom prostranstvennoj raboty. Sovremennye naukoemkie texnologii, 2011, no. 1, pp. 21-24. (In Russian).
    3. Agafonova V. V. Chislennoe modelirovanie pri ocenkax ognestojkosti stal'nyx konstrukcij s primeneniem ognezashhity iz vermikulitovyx plit. Izvestiya Yuzhnogo federal'nogo universiteta. Texnicheskie nauki, 2013, no. 8 (145), pp. 173-177. (In Russian).
    4. Dmitriev A. N., Davydkin N. F., Straxov V. L. Osobennosti raschyota fakticheskix predelov ognestojkosti stalezhelezobetonnyx stroitel'nyx konstrukcij. Promyshlennoe i grazhdanskoe stroitel'stvo, 2007, no. 6, pp. 25-28. (In Russian).
    5. Filimonov V. P. Materialy dlya passivnoj ognezashhity stroitel'nyx konstrukcij. Stroitel'nye materialy, 2006, no. 4, pp. 28-29. (In Russian).
    6. Akulov A. Yu., Ivanov V. A., Aksenov A. V. Ognezashhitnoe pokrytie na osnove mineral'nyx termostojkix zapolnitelej dlya metallicheskix konstrukcij. Nauchno-texnicheskie vedomosti SPbGPU, 2010, no. 110, pp. 263- 266. (In Russian).
  • Safety of Laminated Wood Structures at the Stage of Production
  • UDC 624.011.14
    Alexander A. SMORCHKOV, Denis A. ORLOV, Sergey A. KEREB, Kseniya O. BARANOVSKAYA
    Abstract. Main factors negatively influencing on the strength of laminated wood structures such as, for example, existence of gear connections necessary for jointing of boards along the length, defects of face glue joints as well as the presence of lamellas made both of spring wood and summerwood in one glued block are presented. On the basis of research of the group of authors, ways of the reduction or complete elimination of negative influence of these factors at the stage of designing and production that significantly improve the structural safety of laminated wood structures are proposed.
    Key words: glued wood, laminated wood structures, anisotropy of wood properties, gear connections, face joints, heart wood, sap wood.
  • REFERENĐES
    1. Turkovskiy S. B., Pogorel'tsev A. A., Skvortsov T. K. Ispol'zovanie kleenykh derevyannykh konstruktsiy v stroitel'stve. Promyshlennoe i grazhdanskoe stroitel'stvo, 1999, no. 10, pp. 30-32. (In Russian).
    2. Koval'chuk L. M. Derevyannye konstruktsii - problemy i resheniya. Promyshlennoe i grazhdanskoe stroitel'stvo, 2001, no 10, pp. 13-14. (In Russian).
    3. Freydin A. S., Vuba K. T. Prognozirovanie svoystv kleevykh soedineniy drevesiny. Moscow, Lesnaya promyshlennost' Publ., 1980. 224 p. (In Russian).
    4. Derevyannye konstruktsii v stroitel'stve. L. M. Koval'chuk, S. B. Turkovskiy, Yu. V. Piskunov [i dr.]. Moscow, Stroyizdat Publ., 1995. 248 p. (In Russian).
    5. Turkovskiy S. B., Lomakin A. D., Pogorel'tsev A. A. Zavisimost' sostoyaniya kleenykh derevyannykh konstruktsiy ot vlazhnosti okruzhayushchego vozdukha. Promyshlennoe i grazhdanskoe stroitel'stvo, 2012, no. 3, pp. 30-32. (In Russian).
    6. Prokof'ev A. S., Smorchkov A. A., Povetkin S. V. O raspolozhenii zubchatykh soedineniy v izgibaemykh kleenykh elementakh. Izvestiya vuzov. Ser. Stroitel'stvo i arkhitektura, 1989, no. 8, pp. 24-27. (In Russian).
    7. Mirkin L. M., Nayshtut Yu. S., Pavlovich S. A. Ob otsenke avariynogo sostoyaniya derevyannykh konstruktsiy : Metody rascheta konstruktsiy iz drevesiny, fanery i plastmass. Leningrad, LISI Publ., 1985, pp. 79-84. (In Russian).
  • On Methods of Assessment of Loss of Bond Strength in Reinforced Concrete Structures under Combined Action of Aggressive Media
  • UDC 624.012.35:620.193.4
    Ekaterina G. PAKHOMOVA, Irina N. GORBUNOVA, Dmitry V. LEZHNEV, Evgeny I. PAKHOMOV
    Abstract. Under conditions of increasing natural and anthropogenic impacts, the important problem is a calculation assessment of operability of bearing structures in the presence of damages of force and corrosion-aggressive character in them. Methods of the determination of loss of bond strength in the case of corrosion damages of reinforced concrete structures are presented; recommendations on the assessment of corrosion damages both of concrete and reinforcement with due regard for impacts of some unfavorable factors (aggressive media) are made. On the basis of investigations executed, practical methods of solution of accounting of loss of bond strength in the case of corrosion damage of a structure are offered.
    Key words: loss of bond strength, reinforced concrete structures, corrosion damages, combined effect of aggressive media.
  • REFERENĐES
    1. Garibov R. B. Prognozirovanie dolgovechnosti zhelezobetonnykh konstruktsiy v agressivnykh ekspluatatsionnykh sredakh. Promyshlennoe i grazhdanskoe stroitel'stvo, 2008, no. 7, pp. 43-44. (In Russian).
    2. Gvozdev A. A., Karpenko N. I. Rabota zhelezobetona s treshchinami pri ploskom napryazhennom sostoyanii. Stroitel'naya mekhanika i raschet sooruzheniy,1965, no. 2, pp. 20-23. (In Russian).
    3. Prochnost', strukturnye izmeneniya i deformatsii betona / A. A. Gvozdev, A. V. Yashin, K. V. Petrova [i dr.]. Moscow, Stroyizdat Publ., 1978. 299 p. (In Russian).
    4. Oatul A. A., Kutin Yu. F., Paseshnik V. V. Stseplenie armatury s betonom. Izvestiya vuzov. Ser. Stroitel'stvo i arkhitektura, 1977, no. 5, pp. 3-15. (In Russian).
    5. Veryuzhskiy Yu. V., Kolchunov V. I. Metody mekhaniki zhelezobetona. Kiev, NAU Publ., 2005. 653 p. (In Russian).
  •  
  • On Designing of a Weld Assembly of a Steel Structure
  • UDC 624.014.078.45 + 624.042.12
    Tatiana G. MIKHAYLENKO
    Abstract. It is proposed to develop methods of calculation of the assembly at the same time with its designing. Accounting for residual stresses from welding and preliminary determination of the most dangerous places of their impact will help to prevent premature failure of the structure. Maximum residual stresses from welding are generated along the axis of the welded joint. The differentiation of operation of components of the assembly for perception of a concrete force will simplify the understanding of the assembly as a whole.
    Key words: designing, welded unit, steel construction, residual stresses from welding, effort, reliability.
  • REFERENCES
    1. Gladshteyn L. I., Basko E. M., Sotskov N. I., Mosyagin D. L. Soprotivlenie khrupkomu razrusheniyu elementov soedinitel'nykh uzlov metallicheskikh konstruktsiy setchatykh pokrytiy. Promyshlennoe i grazhdanskoe stroitel'stvo, 2011, no. 6, pp. 14-18. (In Russian).
    2. Goritskiy V. M., Malan'in A. V., Goritskiy O. V., Pleskov G. M. Otsenka napryazhyenno-deformirovannogo sostoyaniya prodol'nykh svarnykh stykovykh soedineniy korobchatogo prolyetnogo stroeniya metodom magnitnoy pamyati metalla. Promyshlennoe i grazhdanskoe stroitel'stvo, 2011, no. 6, pp. 33-36. (In Russian).
    3. Emel'yanov O. V., Bultykov A. V., Shuvalov A. N. Vliyanie konstruktivnykh parametrov svarivaemykh elementov iz parnykh ugolkov na uroven' kontsentratsii napryazheniy soedineniya v zone obryva fasonki. Promyshlennoe i grazhdanskoe stroitel'stvo, 2012, no. 12, pp. 10-12. (In Russian).
    4. Mikhaylenko T. G., Maychenko Yu. V. Uzel sopryazheniya nerazreznykh stal'nykh vtorostepennykh balok i stal'noy glavnoy balki. Patent Rossii no. 120668. 2012. Bull. no. 27. (In Russian).
    5. Mikhaylenko T. G., Vorob'ev S. I. Uzel soedineniya trub raznogo diametra. Patent Rossii no. 2357145. 2009. Bull. no. 15. (In Russian).
    6. Mikhaylenko T. G. Analiticheskoe opredelenie mesta vozmozhnogo razrusheniya svarnoy konstruktsii. Materialy i uprochnyayushchie tekhnologii : materialy XIX Rossiyskoy nauchno-tekhn. konf. s mezhdunar. uchastiem. Kursk, 2012, pp. 184-190. (In Russian).
    7. Ignat'eva V. S., Kochergin Yu. G. K raschetu ostatochnykh svarochnykh napryazheniy. Trudy MISI, Moscow, 1966, pp. 373-392. (In Russian).
  •  
  • Assessment of Influence of Vertical Obliquity of Supporting Units of Steel Space-Grid Structures
  • UDC 624.014.046
    Nikolay N. DEMIDOV
    Abstract. The effect of vertical obliquity of supporting units on the stress-strain state of typical space-grid structures is analyzed. The calculation of supporting units for vertical obliquity with the use of methods of descriptive geometry is proposed. Recommendations on the practical application of assessing the impact of vertical obliquities on the forces in the bars of a structure are made.
    Key words: steel space-grid structures, vertical obliquity of supporting units, plane, redistribution of efforts.
  • REFERENCES
    1. Demidov N. N. Uchet vliyaniya vertikal'nogo perekosa opornykh uzlov prostranstvennykh sterzhnevykh konstruktsiy na ikh napryazhennoe sostoyanie. Sbornik nauchnykh trudov Instituta stroitel'stva i arkhitektury MGSU. M., 2008, pp. 65-67. (In Russian).
    2. Demidov N. N., Brazhenas G. Yu. Kolichestvennaya otsenka nesushchey sposobnosti strukturnykh konstruktsiy MARKhI s defektami v vide zazorov. Izvestiya vuzov. Ser. Stroitel'stvo i arkhitektura, 1989, no. 5, pp. 8-11. (In Russian).
    3. Demidov N. N. Obobshchenie opyta usileniya stal'nykh strukturnykh konstruktsiy s boltovymi soedineniyami VNIINTPI. Stroitel'stvo i arkhitektura. Ser. Stroitel'nye konstruktsii i materialy, 1998, vol. 4, pp. 8-10. (In Russian).
  • Optimal Design, Planning and Geometric Solutions for Light Wells of Multi-Storey Industrial Buildings
  • UDC 69.024.9
    Sergey V. STETSKY, CHEN GUANGLONG
    Abstract. The article deals with problems of optimum structural decisions for lighting wells infilling and with planning parameters of the wells in multistory industrial buildings for south - east China' climatic conditions. Using the criteria of lighting technique the optimum relation between area of dead and glazed portions of lighting wells' cladding was determined, along with determinations of their size and spacing in the floor plans of the buildings in question. The conclusions about the need of cladding' dead areas' implementation as the means of additional natural lighting' reflection and about optimum spacing, size, shapes and proportions of the lighting wells in buildings under consideration were made.
    Key words: lighting wells, structures of area lights infilling, light environment, coefficient of natural lighting, multi-storey industrial buildings, quality of internal microclimate, structural decisions for floors.
  • REFERENCES
    1. Stetskiy S. V., Chen Guanlun. Sozdanie kachestvennoy svetovoy sredy v pomeshcheniyakh proizvodstvennykh zdaniy dlya klimaticheskikh usloviy yugo-vostochnogo Kitaya. Vestnik MGSU, 2012, no. 7, pp. 16-25. (In Russian).
    2. Stetskiy S. V., Chen Guanlun. Optimizatsiya geometricheskikh parametrov svetovykh kolodtsev dlya mnogoetazhnykh proizvodstvennykh zdaniy dlya usloviyakh yugo-vostochnogo Kitaya. Vestnik MGSU, 2012, no. 11, pp. 23-31. (In Russian).
    3. Solovev A. K. Effektivnost' verkhnego estestvennogo osveshcheniya proizvodstvennykh zdaniy : avtoref. dis. d-ra tekhn. nauk. Moscow, 2010. 72 p. (In Russian).
    4. Skat D. D. Kompleksnyy metod rascheta zenitnogo osveshcheniya zdaniy : avtoref. dis. kand. tekhn. nauk. Poltava, 1999. 20 p. (In Russian).
    5. Solovev A. K. Uchet vliyaniya otrazhennogo sveta v raschetakh estestvennogo osveshcheniya promyshlennykh zdaniy s sistemoy verkhnikh svetoproemov pri neravnomernom svetoraspredelenii : sb. tr. ╣ 103 kafedry arkhitektury MISI. Moscow, 1974, pp. 73-82. (In Russian).
    6. Solovev A.K. Otsenka svetovoy sredy proizvodstvennykh pomeshcheniy v usloviyakh yasnogo neba. Svetotekhnika, 1987, no. 7, pp. 14-16. (In Russian).
    7. Zemtsov V. A. Voprosy proektirovaniya i rascheta estestvennogo osveshcheniya pomeshcheniy cherez zenitnye fonari shakhtnogo tipa. Svetotekhnika, 1990, no. 10, pp. 25-26. (In Russian).
    8. Solovev A. K. Polye trubchatye svetovody i ikh primenenie dlya estestvennogo osveshcheniya zdaniy. Promyshlennoe i grazhdanskoe stroitel'stvo, 2007, no. 2, pp. 53-55. (In Russian).
  •  
  • Development of Structural Conception of a Ceramic Granite Facade System
  • UDC 69.022.326
    Alexey └. EMELYANOV, Valentina ╠. TUSNINA
    Abstract. A brief description of structural conceptions of suspended fašade systems with facing made of ceramic granite tiles is presented. A principally new structural conception of the fašade system with standard fastening elements (bolts, nuts, anchor threaded rods, cleat) makes it possible to reduce the system cost and to extend the capabilities of its large-scale implementation. Structural elements are made of corrosion-resistant steel that permits to increase the service life, to increase the coefficient of heat engineering uniformity of external walls and thermal protection of the building in whole.
    Key words: suspended facade system, bracket, cleat, thermal inhomogeneity.
  • REFERENCES
    1. Granovskiy A. V., Kiselev D. A., Aleksandriya M. G. Anchor fastening: problems and solutions. Tekhnologii stroitel'stva, 2006, no. 6, pp. 6-11. (In Russian).
    2. Glikin S. M., Kodysh E. N. Hinged facade systems with effective heat insulation and the ventilated air gap. Promyshlennoe i grazhdanskoe stroitel'stvo, 2008, no. 9, pp. 36-37. (In Russian).
    3. Kazakevich A. V. Corrosion resistance - a basis of safety of steel structures. Tekhnologii stroitel'stva, 2006, no 7, pp. 22-25. (In Russian).
    4. Mekhnetsov I. A. Criteria for selection of materials for hinged ventilated facades. Tekhnologii stroitel'stva, 2006, no. 3, pp. 72-75. (In Russian).
    5. Emelyanov D. A. Proposals for Improving the Bearing Wall of a Suspended Ventilated Fa˝ade Made of Composite Materials. Promyshlennoe i grazhdanskoe stroitel'stvo, 2012, no. 12, pp. 28-30. (In Russian).
  •  
  • Computer Modeling of Accuracy of Erection of Two-Layer Metal Domes
  • UDC 624.074.2:681.3.06
    Evgeny V. LEBED
    Abstract. The paper gives general characteristics of accuracy of metal space domes with large spans. A dependence of real geometric form of their frames from errors in structural elements is discussed. Principles of the numerical modeling of the assembly process of two-layer metal domes with the purpose of obtaining their actual geometrical forms and evaluating the accuracy of assembling are described. An investigation of possible deviations in geometrical form of the 8-tier frame of the dome with 16 rib was performed using the author's computer program which algorithm is based on the Monte Carlo method. Two different techniques of assembly of the dome are considered: suspended erection and erection with a temporary central support. The errors in dimensions of the assembly blocks were restricted by admissible deviations.
    Key words: metal dome, accuracy of construction, errors of structural elements, numerical modeling of assembly process, computer program.
  • REFERENCES
    1. Savel'ev V. A., Lebed' E. V., Shebalina O. V. Matematicheskoe modelirovanie montazha prostranstvennykh konstruktsiy. Promyshlennoe stroitel'stvo, 1991, no. 1, pp. 18-20. (In Russian).
    2. Sobol I. M. Chislennye Metody Monte-Karlo. Moscow. Nauka Publ, 1973. 312 p. (In Russian).
    3. Lebed E. V. Chislennoe issledovanie pogreshnostey vozvedeniya bol'sheproletnykh metallicheskikh kupolov na EVM. Sovershenstvovanie konstruktivnykh resheniy i metodov rascheta stroitel'nykh konstruktsiy. Saratov, Saratov St. Technical Univ. Publ.,1999, pp. 45-52. (In Russian).
    4. Lebed E. V. Prognozirovanie pogreshnostey vozvedeniya karkasa bol'sheproletnogo 8-yarusnogo rebristogo kupola. Vestnik VolgGASA. Ser. Tekhnicheskie nauki, 2003, vol. 2-3 (8), pp. 11-17. (In Russian).
    5. Lebed E. V. Komp'yuternoe modelirovanie montazha metallicheskih kupolov s uchetom pogreshnostey razmerov ih ob'emnyh elementov. Aktualnye problemy kompyuternogo modelirovaniya konstruktsyi i sooruzheny. Tezisy simpoziuma. Nizhny Novgorod, NNGASU Publ., 2007, pp. 59-61. (In Russian).
    6. Lebed E. V. Geometricheskiy raschet karkasov prostranstvennykh sooruzheniy. Saratov, Saratov St. Technical Univ. Publ, 2001, 40 p. (In Russian).
    7. Torkatyuk V. I. Montazh konstruktsy bol'sheproletnyh zdany. Moscow. Stroyizdat Publ., 1985. 170 p. (In Russian).
    8. Gofshtein G. E., Kim V. G., Nishchev V. N., Sokolova A. D. Montazh metallicheskih i zhelezobetonnyh konstruktsy. Moscow. Stroyizdat Publ., 2004. 528 p. (In Russian).